Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod

Abstract

Existing methods for the optical detection of single molecules require the molecules to absorb light to produce fluorescence1 or direct absorption signals2,3,4. This limits the range of species that can be detected, because most molecules are purely refractive. Metal nanoparticles5,6 or dielectric resonators7,8,9 can be used to detect non-absorbing molecules because local changes in the refractive index produce a resonance shift. However, current approaches only detect single molecules when the resonance shift is amplified by a highly polarizable label8,10,11 or by a localized precipitation reaction on the surface of a nanoparticle12. Without such amplification, single-molecule events can only be identified in a statistical way13. Here, we report the plasmonic detection of single molecules in real time without the need for labelling or amplification. Our sensor consists of a single gold nanorod coated with biotin receptors, and the binding of single proteins is detected by monitoring the plasmon resonance of the nanorod with a sensitive photothermal assay14. The sensitivity of our device is 700 times higher than state-of-the-art plasmon sensors15 and is intrinsically limited by spectral diffusion of the surface plasmon resonance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of the method.
Figure 2: Photothermal time trace showing single-molecule binding events.
Figure 3: Statistics of the SPR shifts induced by a single molecule.

Similar content being viewed by others

References

  1. Moerner, W. E. & Orrit, M. Illuminating single molecules in condensed matter. Science 283, 1670–1676 (1999).

    Article  CAS  Google Scholar 

  2. Gaiduk, A., Yorulmaz, M., Ruijgrok, P. V. & Orrit, M. Room-temperature detection of a single molecule's absorption by photothermal contrast. Science 330, 353–356 (2010).

    Article  CAS  Google Scholar 

  3. Chong, S., Min, W. & Xie, X. S. Ground-state depletion microscopy: detection sensitivity of single-molecule optical absorption at room temperature. J. Phys. Chem. Lett. 1, 3316–3322 (2010).

    Article  CAS  Google Scholar 

  4. Kukura, P., Celebrano, M., Renn, A. & Sandoghdar, V. Single-molecule sensitivity in optical absorption at room temperature. J. Phys. Chem. Lett. 1, 3323–3327 (2010).

    Article  CAS  Google Scholar 

  5. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    Article  CAS  Google Scholar 

  6. Mayer, K. M. & Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 111, 3828–3857 (2011).

    Article  CAS  Google Scholar 

  7. Arnold, S., Khoshsima, M., Teraoka, I., Holler, S. & Vollmer, F. Shift of whispering-gallery modes in microspheres by protein adsorption. Opt. Lett. 28, 272–274 (2003).

    Article  CAS  Google Scholar 

  8. Shopova, S. I., Rajmangal, R., Holler, S. & Arnold, S. Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection. Appl. Phys. Lett. 98, 243104 (2011).

    Article  Google Scholar 

  9. Lu, T. et al. High sensitivity nanoparticle detection using optical microcavities. Proc. Natl Acad. Sci. USA 108, 5976–5979 (2011).

    Article  CAS  Google Scholar 

  10. Sönnichsen, C., Reinhard, B. M., Liphardt, J. & Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nature Biotechnol. 23, 741–745 (2005).

    Article  Google Scholar 

  11. Sannomiya, T., Hafner, C. & Vörös, J. In situ sensing of single binding events by localized surface plasmon resonance. Nano Lett. 8, 3450–3455 (2008).

    Article  CAS  Google Scholar 

  12. Chen, S., Svedendahl, M., Van Duyne, R. P. & Käll, M. Plasmon-enhanced colorimetric ELISA with single molecule sensitivity. Nano Lett. 11, 1826–1830 (2011).

    Article  CAS  Google Scholar 

  13. Mayer, K. M., Hao, F., Lee, S., Nordlander, P. & Hafner, J. H. A single molecule immunoassay by localized surface plasmon resonance. Nanotechnology 21, 255503 (2010).

    Article  Google Scholar 

  14. Boyer, D., Tamarat, P., Maali, A., Lounis, B. & Orrit, M. Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297, 1160–1163 (2002).

    Article  CAS  Google Scholar 

  15. Nusz, G. J., Curry, A. C., Marinakos, S. M., Wax, A. & Chilkoti, A. Rational selection of gold nanorod geometry for label-free plasmonic biosensors. ACS Nano 3, 795–806 (2009).

    Article  CAS  Google Scholar 

  16. Nie, S. M. & Emory, S. R. Single-molecule detection and spectroscopy by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  CAS  Google Scholar 

  17. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    Article  CAS  Google Scholar 

  18. Xu, H. X., Bjerneld, E. J., Käll, M. & Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357–4360 (1999).

    Article  CAS  Google Scholar 

  19. Stiles, P. L., Dieringer, J. A., Shah, N. C. & Van Duyne, R. P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008).

    Article  CAS  Google Scholar 

  20. Etchegoin, P. G. & Le Ru, E. C. A perspective on single molecule SERS: current status and future challenges. Phys. Chem. Chem. Phys. 10, 6079–6089 (2008).

    Article  CAS  Google Scholar 

  21. Liu, M. Z., Guyot-Sionnest, P., Lee, T. W. & Gray, S. K. Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations. Phys. Rev. B 76, 235428 (2007).

    Article  Google Scholar 

  22. Jana, N. R. Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small 1, 875–882 (2005).

    Article  CAS  Google Scholar 

  23. Zijlstra, P., Bullen, C., Chon, J. W. M. & Gu, M. High-temperature seedless synthesis of gold nanorods. J. Phys. Chem. B 110, 19315–19318 (2006).

    Article  CAS  Google Scholar 

  24. Berciaud, S., Cognet, L., Blab, G. A. & Lounis, B. Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals. Phys. Rev. Lett. 93, 257402 (2004).

    Article  Google Scholar 

  25. Vörös, J. The density and refractive index of adsorbing protein layers. Biophys. J. 87, 553–561 (2004).

    Article  Google Scholar 

  26. Kerssemakers, J. W. J. et al. Assembly dynamics of microtubules at molecular resolution. Nature 442, 709–712 (2006).

    Article  CAS  Google Scholar 

  27. Yurkin, M. A. & Hoekstra, A. G. The discrete-dipole-approximation code ADDA: capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transf. 112, 2234–2247 (2011).

    Article  CAS  Google Scholar 

  28. Weber, P. C., Ohlendorf, D. H., Wendoloski, J. J. & Salemme, F. R. Structural origins of high-affinity biotin binding to streptavidin. Science 243, 85–88 (1989).

    Article  CAS  Google Scholar 

  29. González, M., Argarana, C. E. & Fidelio, G. D. Extremely high thermal stability of streptavidin and avidin upon biotin binding. Biomol. Eng. 16, 67–72 (1999).

    Article  Google Scholar 

  30. Robertson, A. D. & Murphy, K. P. Protein structure and the energetics of protein stability. Chem. Rev. 97, 1251–1267 (1997).

    Article  CAS  Google Scholar 

  31. Ament, I., Prasad, J., Henkel, A., Schmachtel, S. & Sönnichsen, C. Single unlabeled protein detection on individual plasmonic nanoparticles. Nano Lett. 12, 1092–1095 (2012).

    Article  CAS  Google Scholar 

  32. Nikoobakht, B. & El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank P.V. Ruijgrok and H. van der Meer for help with the experimental set-up. P.Z. and M.O. acknowledge financial support from the European Research Council (Advanced Grant SiMoSoMa). P.Z. acknowledges financial support from the Netherlands Organisation for Scientific Research (Veni Fellowship). P.M.R.P. acknowledges financial support from Program Ciência 2008 from Fundação para a Ciência e a Tecnologia.

Author information

Authors and Affiliations

Authors

Contributions

P.Z. and M.O. designed the optical experiments. P.Z. and P.M.R.P. developed the procedure for tip functionalization. P.Z. performed the optical experiments. P.M.R.P. performed the calculations. P.Z, P.M.R.P. and M.O. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Michel Orrit.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zijlstra, P., Paulo, P. & Orrit, M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nature Nanotech 7, 379–382 (2012). https://doi.org/10.1038/nnano.2012.51

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.51

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing