Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications

Abstract

Pressure sensitivity and mechanical self-healing are two vital functions of the human skin. A flexible and electrically conducting material that can sense mechanical forces and yet be able to self-heal repeatably can be of use in emerging fields such as soft robotics and biomimetic prostheses, but combining all these properties together remains a challenging task. Here, we describe a composite material composed of a supramolecular organic polymer with embedded nickel nanostructured microparticles, which shows mechanical and electrical self-healing properties at ambient conditions. We also show that our material is pressure- and flexion-sensitive, and therefore suitable for electronic skin applications. The electrical conductivity can be tuned by varying the amount of nickel particles and can reach values as high as 40 S cm−1. On rupture, the initial conductivity is repeatably restored with 90% efficiency after 15 s healing time, and the mechanical properties are completely restored after 10 min. The composite resistance varies inversely with applied flexion and tactile forces. These results demonstrate that natural skin's repeatable self-healing capability can be mimicked in conductive and piezoresistive materials, thus potentially expanding the scope of applications of current electronic skin systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Preparation of the self-healing composite.
Figure 2: Electrical and conductive healing efficiency characterization of self-healing composite.
Figure 3: Mechanical and healing efficiency characterization of the self-healing composite.
Figure 4: Characterization and application of the self-healing electronic sensor skin.

Similar content being viewed by others

References

  1. Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  CAS  Google Scholar 

  2. Mannsfeld, S. C. B. et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Mater. 9, 859–864 (2010).

    Article  CAS  Google Scholar 

  3. Takei, K. et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Mater. 9, 821–826 (2010).

    Article  CAS  Google Scholar 

  4. Wagner, S. et al. Electronic skin: architecture and components. Physica E 25, 326–334 (2004).

    Article  Google Scholar 

  5. Cotton, D., Graz, I. & Lacour, S. P. A multifunctional capacitive sensor for stretchable electronic skins. Sensors J. 9, 2008–2009 (2009).

    Article  Google Scholar 

  6. Lipomi, D. J. et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotech. 6, 788–792 (2011).

    Article  CAS  Google Scholar 

  7. Someya, T. et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl Acad. Sci. USA 101, 9966–9970 (2004).

    Article  CAS  Google Scholar 

  8. Ramuz, M., Tee, B. C.-K., Tok, J. B-H. & Bao, Z. Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv. Mater. 24, 3223–3227 (2012).

    Article  CAS  Google Scholar 

  9. Pang, C. et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nature Mater. 11, 795–801 (2012).

    Article  CAS  Google Scholar 

  10. Ilievski, F., Mazzeo, A., Shepherd, R., Chen, X. & Whitesides, G. M. Soft robotics for chemists. Angew. Chem. Int. Ed. 50, 1930–1935 (2011).

    Article  Google Scholar 

  11. Shepherd, R. F. et al. Multigait soft robot. Proc. Natl Acad. Sci. USA 108, 20400–20403 (2011).

    Article  CAS  Google Scholar 

  12. Chen, X. et al. A thermally re-mendable cross-linked polymeric material. Science 295, 1698–1701 (2002).

    Article  CAS  Google Scholar 

  13. Burnworth, M. et al. Optically healable supramolecular polymers. Nature 472, 334–337 (2011).

    Article  CAS  Google Scholar 

  14. Cordier, P., Tournilhac, F., Soulié-Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008).

    Article  CAS  Google Scholar 

  15. Montarnal, D., Tournilhac, F., Hidalgo, M., Couturier, J-L. & Leibler, L. Versatile one-pot synthesis of supramolecular plastics and self-healing rubbers. J. Am. Chem. Soc. 131, 7966–7967 (2009).

    Article  CAS  Google Scholar 

  16. Yuan, W. et al. Fault-tolerant dielectric elastomer actuators using single-walled carbon nanotube electrodes. Adv. Mater. 20, 621–625 (2008).

    Article  CAS  Google Scholar 

  17. Brochu, P. & Pei, Q. Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 31, 10–36 (2010).

    Article  CAS  Google Scholar 

  18. Nakahata, M., Takashima, Y., Yamaguchi, H. & Harada, A. Redox-responsive self-healing materials formed from host–guest polymers. Nature Commun. 2, 511–516 (2011).

    Article  Google Scholar 

  19. Phadke, A. et al. Rapid self-healing hydrogels. Proc. Natl Acad. Sci. USA 109, 4383–4388 (2012).

    Article  CAS  Google Scholar 

  20. Li, Y., Li, L. & Sun, J. Bioinspired self-healing superhydrophobic coatings. Angew. Chem. Int. Ed. 122, 6265–6269 (2010).

    Article  Google Scholar 

  21. Wong, T-S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011).

    Article  CAS  Google Scholar 

  22. Wang, Q. et al. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463, 339–343 (2010).

    Article  CAS  Google Scholar 

  23. Williams, K., Boydston, A. & Bielawski, C. Towards electrically conductive, self-healing materials. J. R. Soc. Interface 4, 359–362 (2007).

    Article  CAS  Google Scholar 

  24. White, S. R. et al. Autonomic healing of polymer composites. Nature 409, 794–797 (2001).

    Article  CAS  Google Scholar 

  25. Odom, S. A. et al. Restoration of conductivity with TTF-TCNQ charge-transfer salts. Adv. Funct. Mater. 20, 1721–1727 (2010).

    Article  CAS  Google Scholar 

  26. Blaiszik, B. J. et al. Autonomic restoration of electrical conductivity. Adv. Mater. 24, 398–401 (2012).

    Article  CAS  Google Scholar 

  27. Odom, S. A. et al. A self-healing conductive ink. Adv. Mater. 24, 2578–2581 (2012).

    Article  CAS  Google Scholar 

  28. Blaiszik, B. J. et al. Self-healing polymers and composites. Annu. Rev. Mater. Res. 40, 179–211 (2010).

    Article  CAS  Google Scholar 

  29. Li, Y., Chen, S., Wu, M. & Sun, J. Polyelectrolyte multilayers impart healability to highly electrically conductive films. Adv. Mater. 24, 4578–4582 (2012).

    Article  CAS  Google Scholar 

  30. Ghosh, S. K. Self-Healing Materials: Fundamentals, Design Strategies, and Applications (Wiley, 2009).

  31. Zhang, M. Q. & Rong, M. Z. Self-Healing Polymers and Polymer Composites (Wiley, 2011).

  32. Wojtecki, R. J., Meador, M. A. & Rowan, S. J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nature Mater. 10, 14–27 (2010).

    Article  Google Scholar 

  33. Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. Supramolecular polymers. Chem. Rev. 101, 4071–4098 (2001).

    Article  CAS  Google Scholar 

  34. Lehn, J-M. Supramolecular polymer chemistry—scope and perspectives. Polym. Int. 51, 825–839 (2002).

    Article  CAS  Google Scholar 

  35. Wang, L. et al. A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Macromol. Rapid Commun. 18, 509–514 (1997).

    Article  CAS  Google Scholar 

  36. Wool, R. Self-healing materials: a review. Soft Matter 4, 400–418 (2008).

    Article  CAS  Google Scholar 

  37. Uchikoshi, T., Sakka, Y., Yoshitake, M. & Yoshihara, K. A study of the passivating oxide layer on fine nickel particles. Nanostruct. Mater. 4, 199–206 (1994).

    Article  CAS  Google Scholar 

  38. Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008).

    Article  CAS  Google Scholar 

  39. Stauffer, D. & Aharony, A. Introduction to Percolation Theory (Taylor & Francis, 1994).

  40. Nan, C. W., Shen, Y. & Ma, J. Physical properties of composites near percolation. Annu. Rev. Mater. Res. 40, 131–151 (2010).

    Article  CAS  Google Scholar 

  41. Bloor, D., Graham, A., Williams, E. J., Laughlin, P. J. & Lussey, D. Metal–polymer composite with nanostructured filler particles and amplified physical properties. Appl. Phys. Lett. 88, 102103 (2006).

    Article  Google Scholar 

  42. Wang, P. & Ding, T. Conductivity and piezoresistivity of conductive carbon black filled polymer composite. J. Appl. Polym. Sci. 116, 2035–2039 (2010).

    Article  CAS  Google Scholar 

  43. Stoddart, J. F. Thither supramolecular chemistry? Nature Chem. 1, 14–15 (2009).

    Article  CAS  Google Scholar 

  44. Carpi, F., Bauer, S. & De Rossi, D. Stretching dielectric elastomer performance. Science 330, 1759–1761 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from the Air Force Office of Scientific Research (grant no. FA9550-12-1-01906). B.C-K.T. acknowledges support from the National Science Scholarship (NSS) from the Agency for Science, Technology and Research (A*STAR). R.A. acknowledges support from the Stanford Graduate Fellowship (SGF) and the Center for Advanced Molecular Photovoltaics (CAMP). Z.B. acknowledges support from LG Display. The authors thank D.J. Lipomi and J. Mei for fruitful discussions, and J.B-H. Tok, N. Liu and Y. Tan for proofreading the manuscript drafts. Thanks also go to I. Wong and Y. Ohkura for help with mechanical testing, and to Y. Diao for initial help with material characterization.

Author information

Authors and Affiliations

Authors

Contributions

B.C-K.T., C.W. and Z.B. conceived, designed and directed the project. B.C-K.T., C.W. and R.A. performed the experiments. C.W. synthesized and characterized the polymer materials. R.A. performed all the rheological measurements and analysis. B.C-K.T. and C.W. co-wrote the manuscript draft. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Zhenan Bao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 22249 kb)

Supplementary movie S1

Supplementary movie S1 (MOV 24442 kb)

Supplementary movie S2

Supplementary movie S2 (MOV 7814 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tee, BK., Wang, C., Allen, R. et al. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nature Nanotech 7, 825–832 (2012). https://doi.org/10.1038/nnano.2012.192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.192

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing