Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection

Abstract

Ultraviolet photodetectors have applications in fields such as medicine, communications and defence1, and are typically made from single-crystalline silicon, silicon carbide or gallium nitride p–n junction photodiodes. However, such inorganic photodetectors are unsuitable for certain applications because of their high cost and low responsivity (<0.2 A W−1)2. Solution-processed photodetectors based on organic materials and/or nanomaterials could be significantly cheaper to manufacture, but their performance so far has been limited2,3,4,5,6,7. Here, we show that a solution-processed ultraviolet photodetector with a nanocomposite active layer composed of ZnO nanoparticles blended with semiconducting polymers can significantly outperform inorganic photodetectors. As a result of interfacial trap-controlled charge injection, the photodetector transitions from a photodiode with a rectifying Schottky contact in the dark, to a photoconductor with an ohmic contact under illumination, and therefore combines the low dark current of a photodiode and the high responsivity of a photoconductor (721–1,001 A W−1). Under a bias of <10 V, our device provides a detectivity of 3.4 × 1015 Jones at 360 nm at room temperature, which is two to three orders of magnitude higher than that of existing inorganic semiconductor ultraviolet photodetectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device structure and working principle of the photodetector.
Figure 2: Performance of the photodetector.
Figure 3: Noise characteristics and specific detectivity of the photodetector.
Figure 4: Transient photocurrent of the P3HT:ZnO device.
Figure 5: Dynamic range of the PVK:ZnO photodetector.

Similar content being viewed by others

References

  1. Li, W. D. & Chou, S. Y. Solar-blind deep-UV band-pass filter (250–350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography. Opt. Express 18, 931–937 (2010).

    Article  CAS  Google Scholar 

  2. Jin, Y. Z., Wang, J. P., Sun, B. Q., Blakesley, J. C. & Greenham, N. C. Solution-processed ultraviolet photodetedtors based on colloidal ZnO nanoparticles. Nano Lett. 8, 1649–1653 (2008).

    Article  CAS  Google Scholar 

  3. Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    Article  CAS  Google Scholar 

  4. Chen, H., Lo, M., Yang, G., Monbouquette, H. & Yang, Y. Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene. Nature Nanotech. 3, 543–547 (2008).

    Article  CAS  Google Scholar 

  5. Sukhovatkin, V., Hinds, S., Brzozowski, L. & Sargent, E. H. Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 324, 1542–1544 (2009).

    Article  CAS  Google Scholar 

  6. Konstantatos, G. & Sargent, E. H. Nanostructured materials for photon detection. Nature Nanotech. 5, 391–400 (2010).

    Article  CAS  Google Scholar 

  7. Gong, X. et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325, 1665–1667 (2009).

    Article  CAS  Google Scholar 

  8. Arnold, M. S. et al. Broad spectral response using carbon nanotube/organic semiconductor/C60 photodetectors. Nano Lett. 9, 3354–3358 (2009).

    Article  CAS  Google Scholar 

  9. Liu, J-M. Photonic Devices 960–986 (Cambridge Univ. Press, 2005).

  10. Yoshikawa, H. & Adachi, S. Optical constants of ZnO. Jpn. J. Appl. Phys. 36, 6237–6243 (1997).

    Article  CAS  Google Scholar 

  11. Redington, R. W. Maximum performance of high-resistivity photoconductors. J. Appl. Phys. 29, 189–193 (1958).

    Article  Google Scholar 

  12. Chen, K. J., Hung, F. Y., Chang, S. J. & Young, S. J. Optoelectronic characteristics of UV photodetector based on ZnO nanowire thin films. J. Alloy Comp. 479, 674–677 (2009).

    Article  CAS  Google Scholar 

  13. Li, Y., Della Valle, F., Simonnet, M., Yamada, I. & Delaunay, J-J. High-performance UV detector made of ultra-long ZnO bridging nanowires. Nanotechnology 20, 045501 (2009).

    Article  Google Scholar 

  14. Kind, H., Yan, H. Q., Messer, B., Law, M. & Yang, P. D. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 14, 158–160 (2002).

    Article  CAS  Google Scholar 

  15. Soci, C. et al. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7, 1003–1009 (2007).

    Article  CAS  Google Scholar 

  16. Liang, S. et al. ZnO Schottky ultraviolet photodetectors. J. Cryst. Growth 225, 110–113 (2001).

    Article  CAS  Google Scholar 

  17. Lao, C. S. et al. Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization. J. Am. Chem. Soc. 129, 12096–12097 (2007).

    Article  CAS  Google Scholar 

  18. Das, S. N. et al. ZnO single nanowire-based UV detectors. Appl. Phys. Lett. 97, 022103 (2010).

    Article  Google Scholar 

  19. Basak, D., Amin, G., Mallik, B., Paul, G. K. & Sen, S. K. Photoconductive UV detectors on sol–gel-synthesized ZnO films. J. Cryst. Growth 256, 73–77 (2003).

    Article  CAS  Google Scholar 

  20. Oosterhout, S. D. et al. The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells. Nature Mater. 8, 818–824 (2009).

    Article  CAS  Google Scholar 

  21. Sun, B. Q., Marx, E. & Greenham, N. C. Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers. Nano Lett. 3, 961–963 (2003).

    Article  CAS  Google Scholar 

  22. Huynh, W. U., Dittmer, J. J. & Alivisatos, A. P. Hybrid nanorod–polymer solar cells. Science 295, 2425–2427 (2002).

    Article  CAS  Google Scholar 

  23. Verbakel, F., Meskers, S. C. J. & Janssen, R. A. J. Electronic memory effects in diodes from a zinc oxide nanoparticle–polystyrene hybrid material. Appl. Phys. Lett. 89, 102103 (2006).

    Article  Google Scholar 

  24. Huang, Q. et al. Covalently bound hole-injecting nanostructures. Systematics of molecular architecture, thickness, saturation, and electron-blocking characteristics on organic light-emitting diode luminance, turn-on voltage, and quantum efficiency. J. Am. Chem. Soc. 127, 10227–10242 (2005).

    Article  CAS  Google Scholar 

  25. Beek, W. J. E., Wienk, M. M., Kemerink, M., Yang, X. N. & Janssen, R. A. J. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. J. Phys. Chem. B 109, 9505–9516 (2005).

    Article  CAS  Google Scholar 

  26. Campoy-Quiles, M. et al. Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends. Nature Mater. 7, 158–164 (2008).

    Article  CAS  Google Scholar 

  27. Baoquan, S., Snaith, H. J., Dhoot, A. S., Westenhoff, S. & Greenham, N. C. Vertically segregated hybrid blends for photovoltaic devices with improved efficiency. J. Appl. Phys. 97, 014914 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Naval Research (ONR, grant no. N000141210556), a Defense Threat Reduction Agency (DTRA) Young Investigator Award (HDTRA1-10-1-0098) and the University of Nebraska–Lincoln.

Author information

Authors and Affiliations

Authors

Contributions

J.H. conceived the idea. J.H. and F.G. designed the experiments and analysed the data. F.G. carried out the fabrication of devices, measurements and data analysis. Y.B., B.Y. and Q.D. synthesized ZnO nanoparticles. B.Y. and Z.X. fabricated the single carrier devices. J.H. and F.G. wrote the manuscript.

Corresponding author

Correspondence to Jinsong Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, F., Yang, B., Yuan, Y. et al. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nature Nanotech 7, 798–802 (2012). https://doi.org/10.1038/nnano.2012.187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.187

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing