Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deformation mechanisms in nanotwinned metal nanopillars

Abstract

Nanotwinned metals are attractive in many applications because they simultaneously demonstrate high strength and high ductility, characteristics that are usually thought to be mutually exclusive. However, most nanotwinned metals are produced in polycrystalline forms and therefore contain randomly oriented twin and grain boundaries making it difficult to determine the origins of their useful mechanical properties. Here, we report the fabrication of arrays of vertically aligned copper nanopillars that contain a very high density of periodic twin boundaries and no grain boundaries or other microstructural features. We use tension experiments, transmission electron microscopy and atomistic simulations to investigate the influence of diameter, twin-boundary spacing and twin-boundary orientation on the mechanical responses of individual nanopillars. We observe a brittle-to-ductile transition in samples with orthogonally oriented twin boundaries as the twin-boundary spacing decreases below a critical value (3–4 nm for copper). We also find that nanopillars with slanted twin boundaries deform via shear offsets and significant detwinning. The ability to decouple nanotwins from other microstructural features should lead to an improved understanding of the mechanical properties of nanotwinned metals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of fabricated nanotwinned copper pillars.
Figure 2: Stress–strain curves and failure behaviours of nanotwinned pillars.
Figure 3: Comparison of deformation mechanisms of nanotwinned pillars with orthogonal and 18° slanted twin boundaries.
Figure 4: Typical deformation characteristics of the simulated samples (diameter, 50 nm; twin-boundary spacing, 1.05 nm) with orthogonal and slanted twin boundaries.
Figure 5: Molecular dynamics simulations of nanotwinned copper pillars under uniaxial tension.

Similar content being viewed by others

References

  1. Callister, W. Materials Science and Engineering: An Introduction 4th edn (Wiley, 1997).

  2. Hirth, J. P. & Lothe, J. Theory of Dislocations 2nd edn (Wiley, 1982).

  3. Greer, J. R. & De Hosson, J. T. Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654–724 (2011).

    Article  CAS  Google Scholar 

  4. Zhu, T. & Li, J. Ultra-strength materials. Prog. Mater. Sci. 55, 710–757 (2010).

    Article  Google Scholar 

  5. Uchic, M. D., Shade, P. A. & Dimiduk, D. M. Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361–386 (2009).

    Article  CAS  Google Scholar 

  6. Lu, L., Chen, X., Huang, X. & Lu, K. Revealing the maximum strength in nanotwinned copper. Science 323, 607–610 (2009).

    Article  CAS  Google Scholar 

  7. Hodge, A., Wang, Y. M. & Barbee, T. Jr Mechanical deformation of high-purity sputter-deposited nano-twinned copper. Scripta Materialia 59, 163–166 (2008).

    Article  CAS  Google Scholar 

  8. Dao, M., Lu, L., Shen, Y. & Suresh, S. Strength, strain-rate sensitivity and ductility of copper with nanoscale twins. Acta Materialia 54, 5421–5432 (2006).

    Article  CAS  Google Scholar 

  9. Li, X., Wei, Y., Lu, L., Lu, K. & Gao, H. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464, 877–880 (2010).

    Article  CAS  Google Scholar 

  10. Wu, Z., Zhang, Y. & Srolovitz, D. J. Dislocation–twin interaction mechanisms for ultrahigh strength and ductility in nanotwinned metals. Acta Materialia 57, 4508–4518 (2009).

    Article  CAS  Google Scholar 

  11. Deng, C. & Sansoz, F. Enabling ultrahigh plastic flow and work hardening in twinned gold nanowires. Nano Lett. 9, 1517–1522 (2009).

    Article  CAS  Google Scholar 

  12. Wang, J. & Huang, H. Novel deformation mechanism of twinned nanowires. Appl. Phys. Lett. 88, 203112 (2006).

    Article  Google Scholar 

  13. Zhu, T., Li, J., Samanta, A., Kim, H. G. & Suresh, S. Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc. Natl Acad. Sci. USA 104, 3031–3036 (2007).

    Article  CAS  Google Scholar 

  14. Asaro, R. J. & Kulkarni, Y. Are rate sensitivity and strength effected by cross-slip in nano-twinned fcc metals. Scripta Materialia 58, 389–392 (2008).

    Article  CAS  Google Scholar 

  15. Ma, E. et al. Strain hardening and large tensile elongation in ultrahigh-strength nano-twinned copper. Appl. Phys. Lett. 85, 4932–4934 (2004).

    Article  CAS  Google Scholar 

  16. Anderoglu, O. et al. Epitaxial nanotwinned Cu films with high strength and high conductivity. Appl. Phys. Lett. 93, 083108 (2008).

    Article  Google Scholar 

  17. Bufford, D., Wang, H. & Zhang, X. High strength, epitaxial nanotwinned Ag films. Acta Materialia 59, 93–101 (2011).

    Article  CAS  Google Scholar 

  18. Zhang, H., Schuster, B. E., Wei, Q. & Ramesh, K. The design of accurate micro-compression experiments. Scripta Materialia 54, 181–186 (2006).

    Article  CAS  Google Scholar 

  19. Ogata, S., Li, J. & Yip, S. Ideal pure shear strength of aluminum and copper. Science 298, 807–811 (2002).

    Article  CAS  Google Scholar 

  20. Jennings, A. T. & Greer, J. R. Tensile deformation of electroplated copper nanopillars. Phil. Mag. 91, 1108–1120 (2011).

    Article  CAS  Google Scholar 

  21. Meyers, M. A. & Chawla, K. K. Mechanical Behavior of Materials 1st edn (Prentice-Hall, 1998).

  22. Jennings, A. T., Li, J. & Greer, J. R. Emergence of strain-rate sensitivity in Cu nanopillars: transition from dislocation multiplication to dislocation nucleation. Acta Materialia 59, 5627–5637 (2011).

    Article  CAS  Google Scholar 

  23. Wang, Y. & Sui, M. L. Atomic-scale in situ observation of lattice dislocations passing through twin boundaries. Appl. Phys. Lett. 94, 021909 (2009).

    Article  Google Scholar 

  24. Chassagne, M., Legros, M. & Rodney, D. Atomic-scale simulation of screw dislocation/coherent twin boundary interaction in Al, Au, Cu and Ni. Acta Materialia 59, 1456–1463 (2011).

    Article  CAS  Google Scholar 

  25. Zhang, Y. & Huang, H. Do twin boundaries always strengthen metal nanowires? Nanoscale Res. Lett. 4, 34–38 (2009).

    Article  CAS  Google Scholar 

  26. Hong, C., Tao, N., Huang, X. & Lu, K. Nucleation and thickening of shear bands in nano-scale twin/matrix lamellae of a CuAl alloy processed by dynamic plastic deformation. Acta Materialia 58, 3103–3116 (2010).

    Article  CAS  Google Scholar 

  27. Hodge, A., Furnish, T., Navid, A. & Barbee, T. Jr Shear band formation and ductility in nanotwinned Cu. Scripta Materialia 65, 1006–1009 (2011).

    Article  CAS  Google Scholar 

  28. Qu, S., Zhou, H. & Huang, Z. Shear band initiation induced by slip-twin boundary interactions. Scripta Materialia 65, 715–718 (2011).

    Article  CAS  Google Scholar 

  29. Wei, Y. Anisotropic size effect in strength in coherent nanowires with tilted twins. Phys. Rev. B 84, 014107 (2011).

    Article  Google Scholar 

  30. Cao, A. J., Wei, Y. G. & Mao, S. X. Deformation mechanisms of face-centered-cubic metal nanowires with twin boundaries. Appl. Phys. Lett. 90, 151909 (2007).

    Article  Google Scholar 

  31. Burek, M. J. & Greer, J. R. Fabrication and microstructure control of nanoscale mechanical testing specimens via electron beam lithography and electroplating. Nano Lett. 10, 69–76 (2010).

    Article  CAS  Google Scholar 

  32. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  Google Scholar 

  33. Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–4690 (1984).

    Article  CAS  Google Scholar 

  34. Mishin, Y., Mehl, M., Papaconstantopoulos, D., Voter, A. & Kress, J. Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63, 224106 (2001).

    Article  Google Scholar 

  35. Tuckerman, M., Berne, B. J. & Martyna, G. J. Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97, 1990–2001 (1992).

    Article  CAS  Google Scholar 

  36. Van Swygenhoven, H., Farkas, D. & Caro, A. Grain-boundary structures in polycrystalline metals at the nanoscale. Phys. Rev. B 62, 831–838 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.J. and J.R.G. acknowledge financial support from the NSF CAREER Grant (DMR-0748267) and the Office of Naval Research (N00014-09-1-0883). X.L. and H.G. also acknowledge financial support from the NSF-sponsored MRSEC Center at Brown University (DMR-0520651) and grant no. CMMI-0758535. The authors acknowledge critical support and infrastructure provided by the Kavli Nanoscience Institute at Caltech. The simulations were performed on the NICS Kraken Cray XT5 system (MS090046).

Author information

Authors and Affiliations

Authors

Contributions

D.J. conducted experiments, including synthesis and in situ testing of samples. X.L. performed atomistic simulations. J.R.G. and H.G. conceived the research and provided guidance. All authors analysed the data, discussed the results and wrote the manuscript.

Corresponding authors

Correspondence to Dongchan Jang or Huajian Gao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 17768 kb)

Supplementary movie 1

Supplementary movie 1 (MOV 3228 kb)

Supplementary movie 2

Supplementary movie 2 (MOV 5578 kb)

Supplementary movie 3

Supplementary movie 3 (MOV 11536 kb)

Supplementary movie 4

Supplementary movie 4 (MOV 6956 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, D., Li, X., Gao, H. et al. Deformation mechanisms in nanotwinned metal nanopillars. Nature Nanotech 7, 594–601 (2012). https://doi.org/10.1038/nnano.2012.116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.116

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing