Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing

Abstract

Negative-index metamaterials (NIMs) are engineered structures with optical properties that cannot be obtained in naturally occurring materials1,2,3. Recent work has demonstrated that focused ion beam4 and layer-by-layer electron-beam lithography5 can be used to pattern the necessary nanoscale features over small areas (hundreds of µm2) for metamaterials with three-dimensional layouts and interesting characteristics, including negative-index behaviour in the optical regime. A key challenge is in the fabrication of such three-dimensional NIMs with sizes and at throughputs necessary for many realistic applications (including lenses, resonators and other photonic components6,7,8). We report a simple printing approach capable of forming large-area, high-quality NIMs with three-dimensional, multilayer formats. Here, a silicon wafer with deep, nanoscale patterns of surface relief serves as a reusable stamp. Blanket deposition of alternating layers of silver and magnesium fluoride onto such a stamp represents a process for ‘inking’ it with thick, multilayer assemblies. Transfer printing this ink material onto rigid or flexible substrates completes the fabrication in a high-throughput manner. Experimental measurements and simulation results show that macroscale, three-dimensional NIMs (>75 cm2) nano-manufactured in this way exhibit a strong, negative index of refraction in the near-infrared spectral range, with excellent figures of merit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabricating 3D NIMs by transfer printing.
Figure 2: Large-area, printed 3D NIMs in supported and free-standing configurations.
Figure 3: Macroscale, printed 3D NIMs and demonstration of use in a repetitive ‘manufacturing’ mode.
Figure 4: Experimental measurements and simulation results for transmission/reflection and refractive indices of 3D NIMs.

Similar content being viewed by others

References

  1. Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10, 509–514 (1968).

    Article  Google Scholar 

  2. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  CAS  Google Scholar 

  3. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article  CAS  Google Scholar 

  4. Valentine, J. et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–380 (2008).

    Article  CAS  Google Scholar 

  5. Liu, N. et al. Three-dimensional photonic metamaterials at optical frequencies. Nature Mater. 7, 31–37 (2007).

    Article  Google Scholar 

  6. Enoch, S., Tayeb, G., Sabouroux, P., Guérin, N. & Vincent, P. A Metamaterial for directive emission. Phys. Rev. Lett. 89, 213902 (2002).

    Article  Google Scholar 

  7. Silveirinha, M. & Engheta, N. Tunneling of electromagnetic energy through subwavelength channels and bends using ɛ-near-zero materials. Phys. Rev. Lett. 97, 157403 (2006).

    Article  Google Scholar 

  8. Edwards, B., Alu, A., Young, M. E., Silveirinha, M. & Engheta, N. Experimental verification of ε-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys. Rev. Lett. 100, 033903 (2008).

    Article  Google Scholar 

  9. Paul, O., Imhof, C., Reinhard, B., Zengerle, R. & Beigang, R. Negative index bulk metamaterial at terahertz frequencies. Opt. Express 16, 6736–6744 (2008).

    Article  CAS  Google Scholar 

  10. Awad, M., Nagel, M. & Kurz, H. Negative-index metamaterial with polymer-embedded wire-pair structures at terahertz frequencies. Opt. Lett. 33, 2683–2685 (2008).

    Article  CAS  Google Scholar 

  11. Dolling, G., Enkrich, C. & Wegener, M. Low-loss negative-index metamaterial at telecommunication wavelengths. Opt. Lett. 31, 1800–1802 (2006).

    Article  CAS  Google Scholar 

  12. Alu, A. & Engheta, N. Three-dimensional nanotransmission lines at optical frequencies: a recipe for broad band negative-refraction optical metamaterials. Phys. Rev. B 75, 024304 (2007).

    Article  Google Scholar 

  13. Dolling, G., Wegener, M. & Linden, S. Realization of a three-functional-layer negative-index photonic metamaterial. Opt. Lett. 32, 551–553 (2007).

    Article  CAS  Google Scholar 

  14. Zhang, S. et al. Optical negative-index bulk metamaterials consisting of 2D perforated metal–dielectric stacks. Opt. Express 14, 6778–6787 (2006).

    Article  Google Scholar 

  15. Dutta, N., Mirza, I. O., Shi, S. & Prather, D. W. Fabrication of large area fishnet optical metamaterial structures operational at near-IR wavelengths. Materials 3, 5283–5292 (2010).

    Article  CAS  Google Scholar 

  16. Zhang, S. et al. Near-infrared double negative metamaterials. Opt. Express 13, 4922–4930 (2005).

    Article  Google Scholar 

  17. Li, T. et al. Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission. Opt. Express 14, 11115–11163 (2006).

    Google Scholar 

  18. Eleftheriades, G. V. Analysis of bandwidth and loss in negative-refractive-index transmission-line (NRI–TL) media using coupled resonators. IEEE Microw. Wireless Components Lett. 17, 412–414 (2007).

    Article  Google Scholar 

  19. Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Nanoimprint lithography. J. Vac. Sci. Technol. B 14, 4129–4133 (1996).

    Article  CAS  Google Scholar 

  20. Costner, E. A., Lin, M. W., Jen, W. L. & Willson, C. G. Nanoimprint lithography materials development for semiconductor device fabrication. Annu. Rev. Mater. Res. 39, 155–180 (2009).

    Article  CAS  Google Scholar 

  21. Xia, Y., Rogers, J. A., Paul, K. E. & Whitesides, G. M. Unconventional methods for fabricating and patterning nanostructures. Chem. Rev. 99, 1823–1848 (1999).

    Article  CAS  Google Scholar 

  22. Gates, B. D., Xu, Q., Love, J. C., Wolfe, D. B. & Whitesides, G. M. Unconventional nanofabrication. Annu. Rev. Mater. Res. 34, 339–372 (2004).

    Article  CAS  Google Scholar 

  23. Lee, M. H., Huntington, M. D., Zhou, W., Yang, J. & Odom, T. W. Programmable soft lithography: solvent-assisted nanoscale embossing. Nano Lett. 11, 311–315 (2011).

    Article  CAS  Google Scholar 

  24. Rolland, J. P., Hagberg, E. C., Carter, K. R. & DeSimone, J. M. High resolution soft lithography: enabling materials for nano-technologies. Angew. Chem. Int. Ed. 43, 5796–5799 (2004).

    Article  CAS  Google Scholar 

  25. LaFratta, C. N., Li, L. & Fourkas, J. T. Soft-lithographic replication of 3D microstructures with closed loops. Proc. Natl Acad. Sci. USA 103, 8589–8594 (2006).

    Article  CAS  Google Scholar 

  26. Hill, D. N., Lee, J. D., Cochran, J. K. & Chapman, A. T. Vapour deposited cone formation during fabrication of low voltage field emitter array cathods. J. Mater. Sci. 31, 1789–1796 (1996).

    Article  CAS  Google Scholar 

  27. Lee, H., Park, Y., Kim, J., Choi, J. & Kim, J. Investigation of the formation mechanism of Spindt-type cathode by simulation and experiments. J. Vac. Sci. Technol. B 17, 547–551 (1999).

    Article  CAS  Google Scholar 

  28. Melik, R., Unal, E., Perkgoz, N. K., Puttlitz, C. & Demir, H. V. Flexible metamaterials for wireless strain sensing. Appl. Phys. Lett. 95, 181105 (2009).

    Article  Google Scholar 

  29. Falco, A. D., Ploschner, M. & Krauss, T. F. Flexible metamaterials at visible wavelengths. New J. Phys. 12, 113006 (2010).

    Article  Google Scholar 

  30. Peralta, X. G. et al. Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies. Appl. Phys. Lett. 94, 161113 (2009).

    Article  Google Scholar 

  31. Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Mater. 5, 33–38 (2006).

    Article  CAS  Google Scholar 

  32. Smith, D. R., Schultz, S., Markos, P. & Soukoulis, C. M. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65, 195104 (2002).

    Article  Google Scholar 

  33. Chen, X., Grzegorczyk, T. M., Wu, B. I., Pacheco, J. Jr & Kong, J. A. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E 70, 016608 (2004).

    Article  Google Scholar 

  34. Smith, D. R., Vier, D. C., Koschny, T. & Soukoulis, C. M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617 (2005).

    Article  CAS  Google Scholar 

  35. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work at University of Illinois was supported by a grant from the Office of Naval Research. The authors also gratefully knowledge the contribution of Sandia National Laboratory, which is a multi-programme laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy (contract no. DE-AC04-94AL85000), in fabricating the large-area master mask using deep UV lithography.

Author information

Authors and Affiliations

Authors

Contributions

D.C. conceived the idea and designed experiments. J.A.R. provided technical guidance. D.C., K.S. and T.C. performed the experiments. D.C. measured, analysed and simulated the data. G.R.B., S.G., A.M., A.C., A.B. and P.B. contributed materials and analysis tools. D.C. and J.A.R. co-wrote the paper.

Corresponding author

Correspondence to John A. Rogers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 970 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chanda, D., Shigeta, K., Gupta, S. et al. Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nature Nanotech 6, 402–407 (2011). https://doi.org/10.1038/nnano.2011.82

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.82

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing