Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced magneto-optical effects in magnetoplasmonic crystals

Abstract

Plasmonics allows light to be localized on length scales much shorter than its wavelength, which makes it possible to integrate photonics and electronics on the nanoscale. Magneto-optical materials are appealing for applications in plasmonics because they open up the possibility of using external magnetic fields in plasmonic devices. Here, we fabricate a new magneto-optical material, a magnetoplasmonic crystal, that consists of a nanostructured noble-metal film on top of a ferromagnetic dielectric, and we demonstrate an enhanced Kerr effect with this material. Such magnetoplasmonic crystals could have applications in telecommunications, magnetic field sensing and all-optical magnetic data storage.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetoplasmonic heterostructures.
Figure 2: Transverse magneto-optical Kerr effect (TMOKE).
Figure 3: Dependence of TMOKE on angle of incidence.
Figure 4: Dependence of TMOKE on the magnetic field.
Figure 5: Effect of different configurations.

Similar content being viewed by others

References

  1. Heber, J. Surfing the wave. Nature 461, 720–722 (2009).

    Article  CAS  Google Scholar 

  2. Polman, A. Plasmonics applied. Science 322, 868–869 (2008).

    Article  Google Scholar 

  3. Maier, S. (ed.) Special Issue: Plasmonics and nanophotonics Phys. Stat. Sol. RRL 4, A85–A98, 241–297 (2010).

    Article  Google Scholar 

  4. Bozhevolnyi, S. I. Plasmonics Nanoguides and Circuits (Pan Stanford, 2008).

    Book  Google Scholar 

  5. Najafov, H., Lee, B., Zhou, Q., Feldman, L. C. & Podzorov, V. Observation of long-range exciton diffusion in highly ordered organic semiconductors. Nature Mater. 9, 938–943 (2010).

    Article  CAS  Google Scholar 

  6. Wurtz, G. A., Pollard, R. & Zayats, A. V. Optical bistability in nonlinear surface-plasmon polaritonic crystals. Phys. Rev. Lett. 97, 057402 (2006).

    Article  CAS  Google Scholar 

  7. Kneipp, K. Surface-enhanced Raman scattering. Physics Today 40–46 (November 2007).

  8. Zvezdin, A. & Kotov, V. Modern Magnetooptics and Magnetooptical Materials (IOP, 1997).

  9. Sarychev, A. K. & Shalaev, V. M. Electrodynamics of Metamaterials. (World Scientific, 2007).

  10. Inoue, M., Arai, K., Fujii, T. & Abe, M. One-dimensional magnetophotonic crystals. J. Appl. Phys. 85, 5768–5771 (1999).

    Article  CAS  Google Scholar 

  11. Levy, M., Yang, H. C., Steel, M. J. & Fujita, J. Flat-top response in one-dimensional magnetic photonic bandgap structures with Faraday rotation enhancement. Lightwave Technol. 19, 1964–1970 (2001).

    Article  CAS  Google Scholar 

  12. Zvezdin, A. K. & Belotelov, V. I. Magnetooptical properties of photonic crystals. Eur. Phys. J. B 37, 479–487 (2004).

    Article  CAS  Google Scholar 

  13. Ferguson, P. E., Stafsudd, O. M. & Wallis, R. F. Surface magnetoplasma waves in nickel. Physica B & C 86–88, 1403–1405 (1977).

    Article  Google Scholar 

  14. Burke, J. J., Stegeman, G. I. & Tamir, T. Surface-polariton-like waves guided by thin, lossy metal films. Phys. Rev. B 33, 5186–5201 (1986).

    Article  CAS  Google Scholar 

  15. Hickernell, R. K. & Sarid, D. Long-range surface magnetoplasmons in thin nickel films. Opt. Lett. 12, 570–572 (1987).

    Article  CAS  Google Scholar 

  16. Olney, R. D. & Romagnoli, R. J. Optical effects of surface plasma waves with damping in metallic thin films. Appl. Opt. 26, 2279–2282 (1987).

    Article  CAS  Google Scholar 

  17. Newman, D. M., Wears, M. L. & Matelon, R. J. Plasmon transport phenomena on a continuous ferromagnetic surface. Europhys. Lett. 68, 692–698 (2004).

    Article  CAS  Google Scholar 

  18. Bonod, N., Reinisch, R., Popov, E. & Neviere, M. Optimization of surface-plasmon-enhanced magneto-optical effects. J. Opt. Soc. Am. B 21, 791–797 (2004).

    Article  CAS  Google Scholar 

  19. Gonzalez-Diaz, J. B. et al. Surface magneto-plasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures. Phys. Rev. B 76, 153402 (2007).

    Article  Google Scholar 

  20. Vila, E. F. et al. Surface plasmon resonance effects in the magneto-optical activity of Ag–Co–Ag trilayers. IEEE Trans. Magn. 44, 3303–3306 (2008).

    Article  CAS  Google Scholar 

  21. Temnov, V. et al. Active magnetoplasmonics in hybrid metal/ferromagnet/metal microinterferometers. Nature Photon. 4, 107–111 (2010).

    Article  CAS  Google Scholar 

  22. Clavero, C., Yang, K., Skuza, J. R. & Lukaszew, R. A. Magnetic-field modulation of surface plasmon polaritons on gratings. Opt. Lett. 35, 1557–1559 (2010).

    Article  CAS  Google Scholar 

  23. Armelles, G. et al. Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties. J. Opt. A 11, 114023 (2009).

    Article  Google Scholar 

  24. Newman, D. M., Wears, M. L., Matelon, R. J. & Hooper, I. R. Magneto-optic behavior in the presence of surface plasmons. J. Phys.: Condens. Matter 20, 345230 (2008).

    Google Scholar 

  25. Buchin, E. Y., Vaganova, E. I., Naumov, V. V., Paporkov, V. A. & Prokaznikov, A. V. Enhancement of the transversal magnetooptical Kerr effect in nanoperforated cobalt films. Tech. Phys. Lett. 35, 589–593 (2008).

    Article  Google Scholar 

  26. Aers, G. C. & Boardman, A. D. The theory of semiconductor magnetoplasmon-polariton surface modes: Voigt geometry. J. Phys. C 11, 945–959 (1978).

    Article  CAS  Google Scholar 

  27. Strelniker, Y. M. & Bergman, D. J. Transmittance and transparency of subwavelength perforated conducting films in the presence of a magnetic field. Phys. Rev. B 77, 205113 (2008).

    Article  Google Scholar 

  28. Zharov, A. A. & Kurin, V. V. Giant resonant magneto-optic Kerr effect in nanostructured ferromagnetic metamaterials. J. Appl. Phys. 102, 123514 (2007).

    Article  Google Scholar 

  29. Wurtz, G. A. et al. Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field. New J. Phys. 10, 105012 (2008).

    Article  Google Scholar 

  30. Belotelov, V. I., Doskolovich, L. L. & Zvezdin, A. K. Extraordinary magnetooptical effects and transmission through the metal–dielectric plasmonic systems. Phys. Rev. Lett. 98, 077401 (2007).

    Article  CAS  Google Scholar 

  31. Belotelov, V. I., Bykov, D. A., Doskolovich, L. L., Kalish, A. N. & Zvezdin, A. K. Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films. J. Opt. Soc. Am. B 26, 1594–1598 (2009).

    Article  CAS  Google Scholar 

  32. Krinchik, G. S. & Artem'ev, V. A. Magneto-optical properties of Ni, Co and Fe in ultraviolet visible and infrared parts of spectrum. J. Exper. Theor. Phys. 26, 1080–1085 (1968).

    Google Scholar 

  33. Druzhinin, A. V., Lobov, I. D., Mayevskiy, V. M. & Bolotin, G. Transverse magnetooptical Kerr effect in transmission. Phys. Met. Metallogr. 56, 58–65 (1983).

    CAS  Google Scholar 

  34. Landau, L. D. & Lifshitz, E. M. Electrodynamics of Continuous Media (Pergamon, 1984).

    Google Scholar 

  35. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4376 (1972).

    Article  CAS  Google Scholar 

  36. Dubovik, V. M. & Tosunyan, L. A. Toroidal moments in the physics of electromagnetic and weak interactions. Sov. J. Part. Nucl. 14, 504–519 (1983).

    Google Scholar 

  37. Kalish, A. N., Belotelov, V. I. & Zvezdin, A. K. Optical properties of toroidal media. SPIE Conf. Proc. 6728, 67283D (2007).

    Article  Google Scholar 

  38. Belotelov, V. I., Bykov, D. A., Doskolovich, L. L., Kalish, A. N. & Zvezdin, A. K. Giant transversal Kerr effect in magnetoplasmonic heterostructures. J. Exper. Theor. Phys. 137, 932–942 (2010).

    Google Scholar 

  39. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    Article  CAS  Google Scholar 

  40. Wood, R. W. Anomalous diffraction gratings. Phys. Rev. 48, 928–936 (1935).

    Article  CAS  Google Scholar 

  41. Sarrazin, M. & Vigneron, J. P. Bounded modes to the rescue of optical transmission. Europhys. News 38, 27–31 (2007).

    Article  CAS  Google Scholar 

  42. Luk'yanchuk B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Mater. 9, 707–715 (2010).

    Article  CAS  Google Scholar 

  43. Porto, J. A., Garcia-Vidal, F. J. & Pendry, J. B. Transmission resonances on metallic gratings with very narrow slits. Phys. Rev. Lett. 83, 2845–2848 (1999).

    Article  CAS  Google Scholar 

  44. Marquier, F., Greffet, J., Collin, S., Pardo, F. & Pelouard, J. Resonant transmission through a metallic film due to coupled modes. Opt. Express 13, 70–76 (2005).

    Article  CAS  Google Scholar 

  45. Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, Th. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

    Article  CAS  Google Scholar 

  46. Moharam, M. G., Pommet, D. A., Grann, E. B. & Gaylord, T. K. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. J. Opt. Soc. Am. A 12, 1077–1086 (1995).

    Article  Google Scholar 

  47. Li, L. Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors. J. Opt. A 5, 345–355 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), the Russian Foundation for Basic Research (RFBR), the Indian Department of Science and Technology (DST) and Russia President's grant (MK-3123.2011.2).

Author information

Authors and Affiliations

Authors

Contributions

V.I.B. and A.K.Z. conceived and designed the experiments. V.A.K., A.V.G., A.S.V. and S.K. fabricated the sample. V.I.B., I.A.A. and M.P. performed the experiments. V.I.B., A.K.Z. and I.A.A. analysed the data. V.I.B., M.B., A.K.Z., I.A.A. and D.R.Y. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to V. I. Belotelov or I. A. Akimov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belotelov, V., Akimov, I., Pohl, M. et al. Enhanced magneto-optical effects in magnetoplasmonic crystals. Nature Nanotech 6, 370–376 (2011). https://doi.org/10.1038/nnano.2011.54

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.54

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing