Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays

Abstract

Flexible, thin-film electronic and optoelectronic devices typically involve a trade-off between performance and fabrication cost1,2,3. For example, solution-based deposition allows semiconductors to be patterned onto large-area substrates to make solar cells and displays, but the electron mobility in solution-deposited semiconductor layers is much lower than in semiconductors grown at high temperatures from the gas phase4. Here, we report band-like electron transport in arrays of colloidal cadmium selenide nanocrystals capped with the molecular metal chalcogenide complex5,6 In2Se42−, and measure electron mobilities as high as 16 cm2 V−1 s−1, which is about an order of magnitude higher than in the best solution-processed organic7 and nanocrystal8 devices so far. We also use CdSe/CdS core–shell nanoparticles with In2Se42− ligands to build photodetectors with normalized detectivity D* > 1 × 1013 Jones (I Jones = 1 cm Hz1/2 W−1), which is a record for IIVI nanocrystals. Our approach does not require high processing temperatures, and can be extended to different nanocrystals and inorganic surface ligands.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Colloidal CdSe and CdSe/CdS nanocrystals with indium selenide capping ligands.
Figure 2: Nanocrystal solids bridged by indium selenide MCCs.
Figure 3: Field-effect transistors using In2Se42−-capped CdSe nanocrystals.
Figure 4: Charge transport and photoconductivity in arrays of CdSe/CdS core–shell nanocrystals.

Similar content being viewed by others

References

  1. Shimoda, T. et al. Solution-processed silicon films and transistors. Nature 440, 783–786 (2006).

    Article  CAS  Google Scholar 

  2. Mitzi, D. B., Copel, M. & Chey, S. J. Low-voltage transistor employing a high-mobility spin-coated chalcogenide semiconductor. Adv. Mater. 17, 1285–1289 (2005).

    Article  CAS  Google Scholar 

  3. Ong, B. S., Li, C., Li, Y., Wu, Y. & Loutfy, R. Stable, solution-processed, high-mobility ZnO thin-film transistors. J. Am. Chem. Soc. 129, 2750–2751 (2007).

    Article  CAS  Google Scholar 

  4. Mitzi, D. B. (ed.) Solution Processing of Inorganic Materials (Wiley, 2009).

    Google Scholar 

  5. Kovalenko, M. V., Scheele, M. & Talapin, D. V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 324, 1417–1420 (2009).

    Article  CAS  Google Scholar 

  6. Tangirala, R., Baker, J. L., Alivisatos, A. P. & Milliron, D. J. Modular inorganic nanocomposites by conversion of nanocrystal superlattices. Angew. Chem. Int. Ed. 49, 2878–2882 (2010).

    Article  CAS  Google Scholar 

  7. Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).

    Article  CAS  Google Scholar 

  8. Talapin, D. V., Lee, J-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).

    Article  CAS  Google Scholar 

  9. Gur, I., Fromer, N. A., Geier, M. L. & Alivisatos, A. P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310, 462–465 (2005).

    Article  CAS  Google Scholar 

  10. Coe, S., Woo, W-K., Bawendi, M. & Bulovic, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).

    Article  CAS  Google Scholar 

  11. Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    Article  CAS  Google Scholar 

  12. Yu, D., Wang, C. & Guyot-Sionnest, P. n-Type conducting CdSe nanocrystal solids. Science 300, 1277–1280 (2003).

    Article  CAS  Google Scholar 

  13. Vanmaekelbergh, D. & Liljeroth, P. Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals. Chem. Soc. Rev. 34, 299–312 (2005).

    Article  CAS  Google Scholar 

  14. Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    Article  CAS  Google Scholar 

  15. Yu, D., Wehrenberg, B. L., Jha, P., Ma, J. & Guyot-Sionnest, P. Electronic transport of n-type CdSe quantum dot films: effect of film treatment. J. Appl. Phys. 99, 104315 (2006).

  16. Jarosz, M. V., Porter, V. J., Fisher, B. R., Kastner, M. A. & Bawendi, M. G. Photoconductivity studies of treated CdSe quantum dot films exhibiting increased exciton ionization efficiency. Phys. Rev. B 70, 195327 (2004).

    Article  Google Scholar 

  17. Law, M. et al. Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. J. Am. Chem. Soc. 130, 5974–5985 (2008).

    Article  CAS  Google Scholar 

  18. Talapin, D. V. & Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310, 86–89 (2005).

    Article  CAS  Google Scholar 

  19. Murphy, J. E., Beard, M. C. & Nozik, A. J. Time-resolved photoconductivity of PbSe nanocrystal arrays. J. Phys. Chem. B 110, 25455–25461 (2006).

    Article  CAS  Google Scholar 

  20. Talgorn, E. et al. Supercrystals of CdSe quantum dots with high charge mobility and efficient electron transfer to TiO2 . ACS Nano 4, 1723–1731 (2010).

    Article  CAS  Google Scholar 

  21. Williams, K. J. et al. Strong electronic coupling in two-dimensional assemblies of colloidal PbSe quantum dots. ACS Nano 3, 1532–1538 (2009).

    Article  CAS  Google Scholar 

  22. Chua, L-L. et al. General observation of n-type field-effect behaviour in organic semiconductors. Nature 434, 194–199 (2005).

    Article  CAS  Google Scholar 

  23. Sze, S. M. Physics of Semiconductor Devices 2nd edn (Wiley, 1981).

    Google Scholar 

  24. Pandey, A. & Guyot-Sionnest, P. Slow electron cooling in colloidal quantum dots. Science 322, 929–932 (2008).

    Article  CAS  Google Scholar 

  25. Klimov, V. I. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion. J. Phys. Chem. B 110, 16827–16845 (2006).

    Article  CAS  Google Scholar 

  26. Sakanoue, T. & Sirringhaus, H. Band-like temperature dependence of mobility in a solution-processed organic semiconductor. Nature Mater 9, 736–740 (2010).

    Article  CAS  Google Scholar 

  27. Konstantatos, G. & Sargent, E. H. Nanostructured materials for photon detection. Nature Nanotech. 5, 391–400 (2010).

    Article  CAS  Google Scholar 

  28. Koleilat, G. I. et al. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano 2, 833–840 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank P. Guyot-Sionnest, E. Shevchenko and D. Mitzi for stimulating discussions, E. Wong and R. Citron for help with the photoconductivity measurements, B. Lee for small angle X-ray scattering measurements at the beamline 12-ID-C at the Advanced Photon Source, S. Rupich for assistance with SEM, M. Bodnarchuk for dynamic light scattering and electrophoretic mobility measurements and S. Ithurria for help with synthesis of CdSe nanocrystals. The work was supported by the Office of Naval Research (award no. N00014-10-1-0190) and a National Science Foundation CAREER award (no. DMR-0847535). D.V.T. thanks the David and Lucile Packard Foundation for their generous support. The work at the Center for Nanoscale Materials (ANL) was supported by the Department of Energy (contract no. DE-AC02-06CH11357). Use of the Advanced Photon Source at Argonne National Laboratory was supported by the DOE, Office of Basic Energy Sciences (contract no. DE-AC02-06CH11357).

Author information

Authors and Affiliations

Authors

Contributions

J.S.L. and D.S.C. carried out device fabrication, performed charge transport measurements, analysed the data and co-wrote the paper. M.V.K. synthesized CdSe nanocrystals and inorganic ligands and carried out ligand exchange. J.H. synthesized CdSe/CdS nanocrystals. D.V.T. conceived and designed the experiments, helped with measurements, analysed the data and co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Dmitri V. Talapin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2153 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JS., Kovalenko, M., Huang, J. et al. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nature Nanotech 6, 348–352 (2011). https://doi.org/10.1038/nnano.2011.46

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.46

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing