Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanochannel electroporation delivers precise amounts of biomolecules into living cells

Abstract

Many transfection techniques can deliver biomolecules into cells, but the dose cannot be controlled precisely. Delivering well-defined amounts of materials into cells is important for various biological studies and therapeutic applications. Here, we show that nanochannel electroporation can deliver precise amounts of a variety of transfection agents into living cells. The device consists of two microchannels connected by a nanochannel. The cell to be transfected is positioned in one microchannel using optical tweezers, and the transfection agent is located in the second microchannel. Delivering a voltage pulse between the microchannels produces an intense electric field over a very small area on the cell membrane, allowing a precise amount of transfection agent to be electrophoretically driven through the nanochannel, the cell membrane and into the cell cytoplasm, without affecting cell viability. Dose control is achieved by adjusting the duration and number of pulses. The nanochannel electroporation device is expected to have high-throughput delivery applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Apparatus and operation of the NEP device.
Figure 2: Comparison of NEP with BEP and MEP.
Figure 3: Dosage control by NEP.
Figure 4: Critical siRNA dosage to kill cancer cells by NEP.
Figure 5: Theoretical analysis of NEP.
Figure 6: Delivery of nanoparticles and plasmids to Jurkat cells.

Similar content being viewed by others

References

  1. Nayak, S. & Herzog, R. W. Progress and prospects: immune responses to viral vectors. Gene Ther. 17, 295–304 (2010).

    Article  CAS  Google Scholar 

  2. Wu, S. C., Huang, G. Y. L. & Liu, J. H. Production of retrovirus and adenovirus vectors for gene therapy: a comparative study using microcarrier and stationary cell culture. Biotechnol. Progr. 18, 617–622 (2002).

    Article  CAS  Google Scholar 

  3. Schmid, R. M. et al. Liposome mediated gene transfer into the rat oesophagus. Gut 41, 549–556 (1997).

    Article  CAS  Google Scholar 

  4. O'Brien, J. A. & Lummis, S. C. R. Biolistic transfection of neuronal cultures using a hand-held gene gun. Nature Protoc. 1, 977–981 (2006).

    Article  CAS  Google Scholar 

  5. Wells, D. J. Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther. 11, 1363–1369 (2004).

    Article  CAS  Google Scholar 

  6. Capecchi, M. R. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22, 479–488 (1980).

    Article  CAS  Google Scholar 

  7. Nagy, A., Gertsenstein, M., Vintersten, K. & Behringer, R. Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Laboratory, 2003).

    Google Scholar 

  8. Luo, D. & Saltzman, W. M. Synthetic DNA delivery systems. Nature Biotechnol. 18, 33–37 (2000).

    Article  CAS  Google Scholar 

  9. Zimmermann, U. & Neil, G. A. Electromanipulation of Cells (CRC Press, 1995).

    Google Scholar 

  10. Coulberson, A. L., Hud, N. V., LeDoux, J. M. & Vilfan, I. D. Gene packaging with lipids, peptides and viruses inhibits transfection by electroporation in vitro. J. Control. Rel. 86, 361–370 (2003).

    Article  CAS  Google Scholar 

  11. Golzio, M., Teissie, J. & Rols, M. P. Direct visualization at the single-cell level of electrically mediated gene delivery. Proc. Natl Acad. Sci. USA 99, 1292–1297 (2002).

    Article  CAS  Google Scholar 

  12. Prasanna, G. L. & Panda, T. Electroporation: basic principles, practical considerations and applications in molecular biology. Bioproc. Eng. 16, 261–264 (1997).

    Article  CAS  Google Scholar 

  13. Costa, M. et al. A method for genetic modification of human embryonic stem cells using electroporation. Nature Protoc. 2, 792–796 (2007).

    Article  CAS  Google Scholar 

  14. Kurosawa, O. et al. Electroporation through a micro-fabricated orifice and its application to the measurement of cell response to external stimuli. Meas. Sci. Technol. 17, 3127–3133 (2006).

    Article  CAS  Google Scholar 

  15. Fei, Z. et al. Micronozzle array enhanced sandwich electroporation of embryonic stem cells. Anal. Chem. 82, 353–358 (2010).

    Article  CAS  Google Scholar 

  16. Fox, M. B. et al. Electroporation of cells in microfluidic devices: a review. Anal. Bioanal. Chem. 385, 474–485 (2006).

    Article  CAS  Google Scholar 

  17. Wang, M., Orwar, O. & Weber, S. G. Single-cell transfection by electroporation using an electrolyte/plasmid-filled capillary. Anal. Chem. 81, 4060–4067 (2009).

    Article  CAS  Google Scholar 

  18. Wang, S., Zhang, X., Wang, W. & Lee, L. J. Semicontinuous flow electroporation chip for high-throughput transfection on mammalian cells. Anal. Chem. 81, 4414–4421 (2009).

    Article  CAS  Google Scholar 

  19. Huang, Y. P. & Rubinsky, B. Micro-electroporation: improving the efficiency and understanding of electrical permeabilization of cells. Biomed. Microdev. 2, 145–150 (1999).

    Article  Google Scholar 

  20. Khine, M., Lau, A., Ionescu-Zanetti, C., Seo, J. & Lee, L. P. A single cell electroporation chip. Lab Chip 5, 38–43 (2005).

    Article  CAS  Google Scholar 

  21. Golzio, M. et al. Control by osmotic pressure of voltage-induced permeabilization and gene transfer in mammalian cells. Biophys. J. 74, 3015–3022 (1998).

    Article  CAS  Google Scholar 

  22. Klenchin, V. A., Sukharev, S. I., Serov, S. M., Chernomordik, L. V. & Chizmadzhev, Y. A. Electrically induced DNA uptake by cells is a fast process involving DNA electrophoresis. Biophys. J. 60, 804–811 (1991).

    Article  CAS  Google Scholar 

  23. Sukharev, S. I., Klenchin, V. A., Serov, S. M., Chernomordik, L. V. & Chizmadzhev, Y. A. Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophys. J. 63, 1320–1327 (1992).

    Article  CAS  Google Scholar 

  24. Glaser, R. W., Leikin, S. L., Chernomordik, L. V., Pastushenko, V. L. & Sokirko, A. I. Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim. Biophys. Acta 940, 275–287 (1988).

    Article  CAS  Google Scholar 

  25. Mir, L. M. et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc. Natl Acad. Sci. USA 96, 4262–4267 (1999).

    Article  CAS  Google Scholar 

  26. Guan, J. et al. Large laterally ordered nanochannel arrays from DNA combing and imprinting. Adv. Mater. 22, 3997–4001 (2010).

    Article  CAS  Google Scholar 

  27. Santangelo, P., Nitin, N. & Bao, G. Nanostructured probes for RNA detection in living cells. Ann. Biomed. Eng. 34, 39–50 (2006).

    Article  Google Scholar 

  28. Sokol, D. L., Zhang, X. L., Lu, P. Z. & Gewitz, A. M. Real time detection of DNA RNA hybridization in living cells. Proc. Natl Acad. Sci. USA 95, 11538–11543 (1998).

    Article  CAS  Google Scholar 

  29. Aichberger, K. J. et al. Identification of mcl-1 as a BCR/ABL-dependent target in chronic myeloid leukemia (CML): evidence for cooperative antileukemic effects of imatinib and mcl-1 antisense oligonucleotides. Blood 105, 3303–3311 (2005).

    Article  CAS  Google Scholar 

  30. Dzhagalov, I., St. John, A. & He, Y. The antiapoptotic protein Mcl-1 is essential for the survival of neutrophils but not macrophages. Blood 109, 1620–1626 (2007).

    Article  CAS  Google Scholar 

  31. Pellegrini, M. & Strasser, A. A portrait of the Bcl-2 protein family: life, death, and the whole picture. J. Clin. Immunol. 19, 365–377 (1999).

    Article  CAS  Google Scholar 

  32. Youle, R. J. & Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nature Rev. Mol. Cell Biol. 9, 47–59 (2008).

    Article  CAS  Google Scholar 

  33. Gowrishankar, T. R. & Weaver, J. C. An approach to electrical modeling of single and multiple cells. Proc. Natl Acad. Sci. USA 100, 3203–3208 (2003).

    Article  CAS  Google Scholar 

  34. Krassowska, W. & Filev, P. D. Modeling electroporation in a single cell. Biophys. J. 92, 404–417 (2007).

    Article  CAS  Google Scholar 

  35. Kotnik, T., Bobanovic, F. & Miklavcic, D. Sensitivity of transmembrane voltage induced by applied electric fields—a theoretical analysis. Bioelectrochem. Bioenerg. 43, 285–291 (1997).

    Article  CAS  Google Scholar 

  36. Henselee, B., Morss, A., Hu, X., Lafyatis, G. P. & Lee, L. J. Electroporation dependence on cell size: an optical tweezers study. Anal. Chem. 83, 3998–4003 (2011).

    Article  Google Scholar 

  37. Delehanty, J. B., Mattoussi, H. & Medintz, I. L. Delivering quantum dots into cells: strategies, progress and remaining issues. Anal. Bioanal. Chem. 393, 1091–1105 (2009).

    Article  CAS  Google Scholar 

  38. Chen, X., Kis, A., Zettl, A. & Bertozzi, C. R. A cell nanoinjector based on carbon nanotubes. Proc. Natl Acad. Sci. USA 104, 8218–8222 (2007).

    Article  CAS  Google Scholar 

  39. Yum, K., Na, S., Xiang, Y., Wang, N. & Yu, M. F. Mechanochemical delivery and dynamic tracking of fluorescent quantum dots in the cytoplasm and nucleus of living cells. Nano Lett. 9, 2193–2198 (2009).

    Article  CAS  Google Scholar 

  40. Alivisatos, A. P., Gu, W. W. & Larabell, C. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 7, 55–76 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to J. Byrd and N. Muthusamy for generously providing patient cancer cells, valuable discussions and comments. The authors thank the National Science Foundation (grant nos EEC-0425626 and EEC-0914790) and the National Institutes of Health (grant no. EB008247) for financially supporting this study. W.L. acknowledges the support from WCU Program by Korea National Research Foundation (NRF).

Author information

Authors and Affiliations

Authors

Contributions

L.J.L. proposed the concept. P.E.B. and L.J.L. conceived and designed the experiment and analysis. P.E.B. performed the NEP experiments and analysed the data, with contributions from A.M. and G.P.L. regarding the optical tweezers, X. Zhang on cell culture and viability/cytotoxicity, B.Y. on siRNA and molecular beacon NEP, X.W. and Y.W. on cell culture and GFP plasmid NEP and O.H. on DCI. W.L. designed the MEP fabrication process. B.H. and H.J. performed the MEP experiments. W-C.L. and X.H. performed the simulations. L.L., K.G. and X. Zhao performed high-throughput NEP design and experiments. P.E.B., L.J.L. and G.P.L. wrote the manuscript, with input from the other authors.

Corresponding author

Correspondence to L. James Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 15107 kb)

Supplementary information

Supplementary movie 1 (WMV 20 kb)

Supplementary information

Supplementary movie 2 (WMV 132 kb)

Supplementary information

Supplementary movie 3 (WMV 536 kb)

Supplementary information

Supplementary movie 4 (AVI 522 kb)

Supplementary information

Supplementary movie 5 (WMV 935 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boukany, P., Morss, A., Liao, Wc. et al. Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Nature Nanotech 6, 747–754 (2011). https://doi.org/10.1038/nnano.2011.164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.164

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research