Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanopore-based detection of circulating microRNAs in lung cancer patients

Abstract

MicroRNAs are short RNA molecules that regulate gene expression, and have been investigated as potential biomarkers because their expression levels are correlated with various diseases. However, detecting microRNAs in the bloodstream remains difficult because current methods are not sufficiently selective or sensitive. Here, we show that a nanopore sensor based on the α-haemolysin protein can selectively detect microRNAs at the single molecular level in plasma samples from lung cancer patients without the need for labels or amplification of the microRNA. The sensor, which uses a programmable oligonucleotide probe to generate a target-specific signature signal, can quantify subpicomolar levels of cancer-associated microRNAs and can distinguish single-nucleotide differences between microRNA family members. This approach is potentially useful for quantitative microRNA detection, the discovery of disease markers and non-invasive early diagnosis of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Capturing single microRNA molecules in the nanopore.
Figure 2: Optimizing the probe sequence for enhanced detection sensitivity.
Figure 3: Differentiation of let-7 microRNAs that contain one or two different nucleotides.
Figure 4: Detection of miR-155 in the plasma of lung cancer patients.

Similar content being viewed by others

References

  1. Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

    Article  CAS  Google Scholar 

  2. Inui, M., Martello, G. & Piccolo, S. MicroRNA control of signal transduction. Nature Rev. Mol. Cell Biol. 11, 252–263 (2010).

    Article  CAS  Google Scholar 

  3. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  Google Scholar 

  4. Kozomara, A. & Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157 (2011).

    Article  CAS  Google Scholar 

  5. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  6. Diederichs, S. & Haber, D. A. Dual role for argonautes in MicroRNA processing and posttranscriptional regulation of MicroRNA expression. Cell 131, 1097–1108 (2007).

    Article  CAS  Google Scholar 

  7. Garzon, R., Calin, G. A. & Croce, C. M. MicroRNAs in cancer. Ann. Rev. Med. 60, 167–179 (2009).

    Article  CAS  Google Scholar 

  8. Ortholan, C. et al. MicroRNAs and lung cancer: new oncogenes and tumor suppressors, new prognostic factors and potential therapeutic targets. Curr. Med. Chem. 16, 1047–1061 (2009).

    Article  CAS  Google Scholar 

  9. Calin, G. A. & Croce, C. M. MicroRNA signatures in human cancers. Nature Rev. Cancer 6, 857–866 (2006).

    Article  CAS  Google Scholar 

  10. Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105, 10513–10518 (2008).

    Article  CAS  Google Scholar 

  11. Kosaka, N. et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem. 285, 17442–17452 (2010).

    Article  CAS  Google Scholar 

  12. Rabinowits, G., Gerçel-Taylor, C., Day, J. M., Taylor, D. D. & Kloecker, G. H. Exosomal microRNA: a diagnostic marker for lung cancer. Clin. Lung Cancer 10, 42–46 (2009).

    Article  CAS  Google Scholar 

  13. Rosell, R., Wei, J. & Taron, M. Circulating MicroRNA signatures of tumor-derived exosomes for early diagnosis of non-small-cell lung cancer. Clin. Lung Cancer 10, 8–9 (2009).

    Article  CAS  Google Scholar 

  14. Chen, C. et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33, e179 (2005).

    Article  Google Scholar 

  15. Li, W. & Ruan, K. MicroRNA detection by microarray. Anal. Bioanal. Chem. 394, 1117–1124 (2009).

    Article  CAS  Google Scholar 

  16. Hunt, E. A., Goulding, A. M. & Deo, S. K. Direct detection and quantification of microRNAs. Anal. Biochem. 387, 1–12 (2009).

    Article  CAS  Google Scholar 

  17. Yendamuri, S. & Kratzke, R. MicroRNA biomarkers in lung cancer: MiRacle or quagMiRe? Transl. Res. 157, 209–215 (2011).

    Article  CAS  Google Scholar 

  18. Neely, L. A. et al. A single-molecule method for the quantitation of microRNA gene expression. Nature Methods 3, 41–46 (2006).

    Article  CAS  Google Scholar 

  19. Bayley, H. & Jayasinghe, L. Functional engineered channels and pores — (Review). Mol. Membrane Biol. 21, 209–220 (2004).

    Article  CAS  Google Scholar 

  20. Gu, L. Q. & Shim, J. W. Single molecule sensing by nanopores and nanopore devices. Analyst 135, 441–451 (2010).

    Article  CAS  Google Scholar 

  21. Howorka, S. & Siwy, Z. Nanopore analytics: sensing of single molecules. Chem. Soc. Rev. 38, 2360–2384 (2009).

    Article  CAS  Google Scholar 

  22. Ma, L. & Cockroft, S. L. Biological nanopores for single-molecule biophysics. Chembiochem 11, 25–34 (2010).

    Article  CAS  Google Scholar 

  23. Movileanu, L. Interrogating single proteins through nanopores: challenges and opportunities. Trends Biotechnol. 27, 333–341 (2009).

    Article  CAS  Google Scholar 

  24. Olasagasti, F. et al. Replication of individual DNA molecules under electronic control using a protein nanopore. Nature Nanotech. 5, 798–806 (2010).

    Article  CAS  Google Scholar 

  25. Bayley, H. Sequencing single molecules of DNA. Current Opin. Chem. Biol. 10, 628–637 (2006).

    Article  CAS  Google Scholar 

  26. Branton, D. et al. The potential and challenges of nanopore sequencing. Nature Biotechnol. 26, 1146–1153 (2008).

    Article  CAS  Google Scholar 

  27. Wanunu, M. et al. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Natur Nanotech. 5, 807–814 (2010).

    Article  CAS  Google Scholar 

  28. Song, L. Z. et al. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1866 (1996).

    Article  CAS  Google Scholar 

  29. Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    Article  CAS  Google Scholar 

  30. Meller, A., Nivon, L. & Branton, D. Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett. 86, 3435–3438 (2001).

    Article  CAS  Google Scholar 

  31. Mitchell, N. & Howorka, S. Chemical tags facilitate the sensing of individual DNA strands with nanopores. Angew. Chem. Int. Ed. 47, 5565–5568 (2008).

    Article  CAS  Google Scholar 

  32. Meller, A., Nivon, L., Brandin, E., Golovchenko, J. & Branton, D. Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl Acad. Sci. USA 97, 1079–1084 (2000).

    Article  CAS  Google Scholar 

  33. Donnem, T. et al. Prognostic impact of miR-155 in non-small cell lung cancer evaluated by in situ hybridization. J. Transl. Med. 9, 6 (2011).

    Article  Google Scholar 

  34. Mathé, J., Visram, H., Viasnoff, V., Rabin, Y. & Meller, A. Nanopore unzipping of individual DNA hairpin molecules. Biophys. J. 87, 3205–3212 (2004).

    Article  Google Scholar 

  35. Sauer-Budge, A. F., Nyamwanda, J. A., Lubensky, D. K. & Branton, D. Unzipping kinetics of double-stranded DNA in a nanopore. Phys. Rev. Lett. 90, 238101 (2003).

    Article  Google Scholar 

  36. Butler, T. Z., Gundlach, J. H. & Troll, M. Ionic current blockades from DNA and RNA molecules in the alpha-hemolysin nanopore. Biophys. J. 93, 3229–3240 (2007).

    Article  CAS  Google Scholar 

  37. Mathé, J., Aksimentiev, A., Nelson, D. R., Schulten, K. & Meller, A. Orientation discrimination of single-stranded DNA inside the alpha-hemolysin membrane channel. Proc. Natl Acad. Sci. USA 102, 12377–12382 (2005).

    Article  Google Scholar 

  38. Purnell, R. F., Mehta, K. K. & Schmidt, J. J. Nucleotide identification and orientation discrimination of DNA homopolymers immobilized in a protein nanopore. Nano. Lett. 8, 3029–3034 (2008).

    Article  CAS  Google Scholar 

  39. Wanunu, M., Morrison, W., Rabin, Y., Grosberg, A. Y. & Meller, A. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nature Nanotech. 5, 160–165 (2010).

    Article  CAS  Google Scholar 

  40. Maglia, G., Restrepo, M. R., Mikhailova, E. & Bayley, H. Enhanced translocation of single DNA molecules through α-hemolysin nanopores by manipulation of internal charge. Proc. Natl. Acad. Sci. USA 105, 19720–19725 (2008).

    Article  CAS  Google Scholar 

  41. Cho, W. C. Role of miRNAs in lung cancer. Expert Rev. Mol. Diagn. 9, 773–776 (2009).

    Article  CAS  Google Scholar 

  42. Howorka, S., Cheley, S. & Bayley, H. Sequence-specific detection of individual DNA strands using engineered nanopores. Nature Biotechnol. 19, 636–639 (2001).

    Article  CAS  Google Scholar 

  43. Nakane, J., Wiggin, M. & Marziali, A. A nanosensor for transmembrane capture and identification of single nucleic acid molecules. Biophys. J. 87, 615–621 (2004).

    Article  CAS  Google Scholar 

  44. Vercoutere, W. et al. Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Nature Biotechnol. 19, 248–252 (2001).

    Article  CAS  Google Scholar 

  45. Landi, M. T. et al. MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin. Cancer Res. 16, 430–441 (2010).

    Article  CAS  Google Scholar 

  46. Silvestri, G. A., Alberg, A. J. & Ravenel, J. The changing epidemiology of lung cancer with a focus on screening. Br. Med. J. 339, 63053 (2009).

    Article  Google Scholar 

  47. Patnaik, S. K., Kannisto, E., Knudsen, S. & Yendamuri, S. Evaluation of microRNA expression profiles that may predict recurrence of localized stage I non-small cell lung cancer after surgical resection. Cancer Res. 70, 36–45 (2010).

    Article  CAS  Google Scholar 

  48. Yanaihara, N. et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9, 189–198 (2006).

    Article  CAS  Google Scholar 

  49. Singer, A. et al. Nanopore based sequence specific detection of duplex DNA for genomic profiling. Nano Lett. 10, 738–742 (2010).

    Article  CAS  Google Scholar 

  50. Bayley, H. et al. Droplet interface bilayers. Mol. Biosyst. 4, 1191–1208 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank K. Gillis, T-C. Hwang, S-J. Chen, F. Hsieh and M. Milanick for invaluable discussions on experimental design and data analysis. This investigation was partially supported by grants from the National Science Foundation 0546165 (L-Q.G.), the National Institutes of Health GM079613 (L-Q.G.) and the University of Missouri Intellectual Property Fast Track Initiative (A8881, M.X.W.), and was conducted in a facility that was constructed with support from the Research Facilities Improvement Program grant no. C06-RR-016489-01 from the National Centre for Research Resources, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. designed and performed the nanopore experiments, collected and analysed the nanopore data, and co-wrote the manuscript. D.Z. designed and performed the qRT-PCR experiments, analysed the qRT-PCR data and co-wrote the manuscript. Q.T. performed molecular biology experiments, including protein synthesis. M.X.W. conceived the qRT-PCR experiments, provided the patients' samples and co-wrote the manuscript. L-Q.G. conceived the principal idea, designed the nanopore experiments and wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Michael X. Wang or Li-Qun Gu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 691 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Zheng, D., Tan, Q. et al. Nanopore-based detection of circulating microRNAs in lung cancer patients. Nature Nanotech 6, 668–674 (2011). https://doi.org/10.1038/nnano.2011.147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.147

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer