Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment

Abstract

The tumour microenvironment regulates tumour progression and the spread of cancer in the body. Targeting the stromal cells that surround cancer cells could, therefore, improve the effectiveness of existing cancer treatments. Here, we show that magnetic nanoparticle clusters encapsulated inside a liposome can, under the influence of an external magnet, target both the tumour and its microenvironment. We use the outstanding T2 contrast properties (r2 = 573–1,286 s−1 mM−1) of these ferri-liposomes, which are 95 nm in diameter, to non-invasively monitor drug delivery in vivo. We also visualize the targeting of the tumour microenvironment by the drug-loaded ferri-liposomes and the uptake of a model probe by cells. Furthermore, we used the ferri-liposomes to deliver a cathepsin protease inhibitor to a mammary tumour and its microenvironment in a mouse, which substantially reduced the size of the tumour compared with systemic delivery of the same drug.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the magnetic nanocarrier system.
Figure 2: MR contrast properties of electrostatically stabilized FMIO nanoparticles.
Figure 3: Monitoring the targeting and release of ferri-liposomes in vivo.
Figure 4: Anti-tumour effect of magnetically targeted ferri-liposomes containing cysteine protease inhibitor JPM-565.
Figure 5: In vivo detection of fluorescent ferri-liposomes in tumours.

Similar content being viewed by others

References

  1. Liotta, L. A. & Kohn, E. C. The microenvironment of the tumour-host interface. Nature 411, 375–379 (2001).

    Article  CAS  Google Scholar 

  2. Mueller, M. M. & Fusenig, N. E. Friends or foes—bipolar effects of the tumour stroma in cancer. Nature Rev. Cancer 4, 839–849 (2004).

    Article  CAS  Google Scholar 

  3. Santos, A. M., Jung, J., Aziz, N., Kissil, J. L. & Puré, E. Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice. J. Clin. Invest. 119, 3613–3625 (2009).

    Article  CAS  Google Scholar 

  4. Rosi, N. L. & Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562 (2005).

    Article  CAS  Google Scholar 

  5. Arrueboa, M., Fernández-Pachecoa, R., Ibarraa, M. R. & Santamaría, S. Magnetic nanoparticles for drug delivery. Nanotoday 2, 22–32 (2007).

    Article  Google Scholar 

  6. Galanzha, E. I. et al. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nature Nanotech. 4, 855–860 (2009).

    Article  CAS  Google Scholar 

  7. Namiki, Y. et al. A novel magnetic crystal–lipid nanostructure for magnetically guided in vivo gene delivery. Nature Nanotech. 4, 598–606 (2009).

    Article  CAS  Google Scholar 

  8. Kim, J. W., Galanzha, E. I., Shashkov, E. V., Moon, H. M. & Zharov, V. P. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nature Nanotech. 4, 688–694 (2009).

    Article  CAS  Google Scholar 

  9. Vlaskou, D. et al. Magnetic and acoustically active lipospheres for magnetically targeted nucleic acid delivery. Adv. Funct. Mater. 20, 3881–3894 (2010).

    Article  CAS  Google Scholar 

  10. Bulte, J. W. M. et al. Selective Mr imaging of labeled human peripheral-blood mononuclear-cells by liposome mediated incorporation of dextran-magnetite particles. Magn. Reson. Med. 29, 32–37 (1993).

    Article  CAS  Google Scholar 

  11. Bulte, J. W., de Cuyper, M., Despres, D. & Frank, J. A. Short- vs. long-circulating magnetoliposomes as bone marrow-seeking MR contrast agents. J. Magn. Reson. Imaging 9, 329–335 (1999).

    Article  CAS  Google Scholar 

  12. Bulte, J. W. M., de Cuyper, M., Despres, D. & Frank, J. A. Preparation, relaxometry, and biokinetics of PEGylated magnetoliposomes as MR contrast agent. J. Magn. Magn. Mater. 194, 204–209 (1999).

    Article  CAS  Google Scholar 

  13. Lee, J. et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature Med. 13, 95–99 (2007).

    Article  CAS  Google Scholar 

  14. Torchilin, V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur. J. Pharm. Biopharm. 71, 431–444 (2009).

    Article  CAS  Google Scholar 

  15. Medarova, Z., Pham, W., Farrar, C., Petkova, V. & Moore, A. In vivo imaging of siRNA delivery and silencing in tumors. Nature Med. 13, 372–377 (2007).

    Article  CAS  Google Scholar 

  16. Naiden, E. et al. Magnеtiс pгopеrtiеs and stгuсtural parameters of nanosizеd oхidе fеrrimagnеt powdеrs produсеd by mесhanoсhemiсal synthеsis frоm salt solutions. Phys. Solid State 5, 891–900 (2003).

    Google Scholar 

  17. Bogdanov, A. A., Martin, C., Weissleder, R. & Brady, T. J. Trapping of dextran-coated colloids in liposomes by transient binding to aminophospholipid—preparation of ferrosomes. Biochim. Biophys. Acta Biomembranes 1193, 212–218 (1994).

    Article  CAS  Google Scholar 

  18. Di Paolo, D. et al. Liposome-mediated therapy of neuroblastoma. Methods Enzymol. 465, 225–249 (2009).

    Article  CAS  Google Scholar 

  19. Torchilin, V. P. et al. Poly(ethylene glycol) on the liposome surface - on the mechanism of polymer-coated liposome longevity. Biochim. Biophys. Acta Biomembranes 1195, 11–20 (1994).

    Article  CAS  Google Scholar 

  20. Fortin-Ripoche, J. P. et al. Magnetic targeting of magnetoliposomes to solid tumors with MR imaging monitoring in mice: feasibility. Radiology 239, 415–424 (2005).

    Article  Google Scholar 

  21. Martina, M. S. et al. Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J. Am. Chem. Soc. 127, 10676–10685 (2005).

    Article  CAS  Google Scholar 

  22. Stollfuss, J. C. et al. Rectal carcinoma: high-spatial-resolution MR imaging and T2 quantification in rectal cancer specimens. Radiology 241, 132–141 (2006).

    Article  Google Scholar 

  23. Seo, W. S. et al. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nature Mater. 5, 971–976 (2006).

    Article  CAS  Google Scholar 

  24. Ai, H. et al. Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Adv. Mater. 17, 1949–1952 (2005).

    Article  CAS  Google Scholar 

  25. Shapiro, M. G., Atanasijevic, T., Faas, H., Westmeyer, G. G. & Jasanoff, A. Dynamic imaging with MRI contrast agents: quantitative considerations. Magn. Reson. Imaging 24, 449–462 (2006).

    Article  CAS  Google Scholar 

  26. Na, H. B. et al. Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem. Int. Ed. 46, 5397–5401 (2007).

    Article  CAS  Google Scholar 

  27. Zhao, M., Josephson, L., Tang, Y. & Weissleder, R. Magnetic sensors for protease assays. Angew Chem. Int. Ed. 42, 1375–1378 (2003).

    Article  CAS  Google Scholar 

  28. Atanasijevic, T., Shusteff, M., Fam, P. & Jasanoff, A. Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin. Proc. Natl Acad. Sci. USA 103, 14707–14712 (2006).

    Article  CAS  Google Scholar 

  29. Guy, C. T., Cardiff, R. D. & Muller, W. J. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol. Cell Biol. 12, 954–961 (1992).

    Article  CAS  Google Scholar 

  30. Wender, P. A. et al. Real-time analysis of uptake and bioactivatable cleavage of luciferin-transporter conjugates in transgenic reporter mice. Proc. Natl Acad. Sci. USA 104, 10340–10345 (2007).

    Article  CAS  Google Scholar 

  31. Greenbaum, D., Medzihradszky, K. F., Burlingame, A. & Bogyo, M. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol. 7, 569–581 (2000).

    Article  CAS  Google Scholar 

  32. Greenbaum, D. et al. Chemical approaches for functionally probing the proteome. Mol. Cell Proteomics 1, 60–68 (2002).

    Article  CAS  Google Scholar 

  33. Joyce, J. A. et al. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5, 443–453 (2004).

    Article  CAS  Google Scholar 

  34. Bell-McGuinn, K., Garfall, A., Bogyo, M., Hanahan, D. & Joyce, J. A. Inhibition of cysteine cathepsin protease activity enhances chemotherapy regimens by decreasing tumor growth and invasiveness in a mouse model of multistage cancer. Cancer Res. 67, 7378–7385 (2007).

    Article  CAS  Google Scholar 

  35. Schurigt, U. et al. Trial of the cysteine cathepsin inhibitor JPM-OEt on early and advanced mammary cancer stages in the MMTV-PyMT-transgenic mouse model. Biol. Chem. 389, 1067–1074 (2008).

    Article  CAS  Google Scholar 

  36. Vasiljeva, O. et al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res. 66, 5242–5250 (2006).

    Article  CAS  Google Scholar 

  37. Vasiljeva, O. & Turk, B. Dual contrasting roles of cysteine cathepsins in cancer progression: apoptosis versus tumour invasion. Biochimie 90, 380–386 (2008).

    Article  CAS  Google Scholar 

  38. Sevenich, L. et al. Synergistic antitumor effects of combined cathepsin B and cathepsin Z deficiencies on breast cancer progression and metastasis in mice. Proc. Natl Acad. Sci. USA 107, 2497–2502 (2010).

    Article  CAS  Google Scholar 

  39. Gocheva, V. & Joyce, J. A. Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 6, 60–64 (2007).

    Article  CAS  Google Scholar 

  40. Turk, V., Kos, J. & Turk, B. Cysteine cathepsins (proteases)—on the main stage of cancer? Cancer Cell 5, 409–410 (2004).

    Article  CAS  Google Scholar 

  41. Rossi, A., Deveraux, Q., Turk, B. & Sali, A. Comprehensive search for cysteine cathepsins in the human genome. Biol. Chem. 385, 363–372 (2004).

    Article  CAS  Google Scholar 

  42. Mohamed, M. M. & Sloane, B. F. Cysteine cathepsins: multifunctional enzymes in cancer. Nature Rev. Cancer 6, 764–775 (2006).

    Article  CAS  Google Scholar 

  43. Vasiljeva, O. et al. Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr. Pharm. Des. 13, 387–403 (2007).

    Article  CAS  Google Scholar 

  44. Sloane, B. F. et al. Cathepsin B and tumor proteolysis: contribution of the tumor microenvironment. Semin. Cancer Biol. 15, 149–157 (2005).

    Article  CAS  Google Scholar 

  45. Gocheva, V. et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 24, 241–255 (2010).

    Article  CAS  Google Scholar 

  46. Ceelen, W. P. & Flessner, M. F. Intraperitoneal therapy for peritoneal tumors: biophysics and clinical evidence. Nature Rev. Clin. Oncol. 7, 108–115 (2010).

    Article  Google Scholar 

  47. Sadaghiani, A. M. et al. Design, synthesis, and evaluation of in vivo potency and selectivity of epoxysuccinyl-based inhibitors of papain-family cysteine proteases. Chem. Biol. 14, 499–511 (2007).

    Article  CAS  Google Scholar 

  48. Vasiljeva, O. et al. Reduced tumour cell proliferation and delayed development of high-grade mammary carcinomas in cathepsin B-deficient mice. Oncogene 27, 4191–4199 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Yu.F. Ivanov (Tomsk Scientific Center) for transmission electron microscopy, G. Kapun (National Institute of Chemistry) for scanning electron microscopy, M. Škarabot (Jozef Stefan Institute) for atomic force microscopy, J. Ščančar and M. Vahčič (Jozef Stefan Institute) for flame atomic absorption spectrometry, I.V. Sukhodolo, R.I. Pleshko, A.N. Dzuman, I.V. Milto and L.M. Ogorodova (Siberian State Medical University) for help in the acute toxicity study, and A. Sepe, M. Butinar, M. Trstenjak-Prebanda and A. Petelin (Jozef Stefan Institute), O.G. Terekhova (Tomsk Scientific Center), M. Tacke and N. Klemm (Institut für Molekulare Medizin und Zellforschung) for technical and methodological assistance, G. Salvesen (Sanford-Burnham Medical Research Institute) for valuable discussions, and R.H. Pain (Jozef Stefan Institute) for critical reading of the manuscript. JPM-565 was kindly provided by the Drug Synthesis and Chemistry Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute. The research leading to these results was supported in part by the European Community's Seventh Framework Programme FP7/2007-2011 (grant agreement no. 201279, Microenvimet, O.V., T.R., C.P. and B.T.), the Slovenian Research Agency (research grant no. P1-0140, B.T.), the Russian Foundation for Basic Research (project no. 07-04-12170, E.P.N.), the United States Civilian Research and Development Foundation (project no. Y4-C16-05, A.A.M and V.I.I.) and the DFG SFB 850 (to T.R., C.P. and R.Z.).

Author information

Authors and Affiliations

Authors

Contributions

G.M., U.M., I.P., S.G.P., B.T. and O.V. conceived and designed the experiments. G.M., U.M., L.B. and O.V. performed the experiments. G.M., U.M., S.G.P., B.T. and O.V. analysed the data. T.R., C.P. and R.Z. contributed transgenic mouse models and animal imaging. M.B. contributed JPM-565 inhibitor. A.A.M., V.I.I., E.P.N. and S.G.P. supplied the magnetic nanoparticles. S.G.P., V.T., B.T. and O.V. supervised the project. G.M., S.G.P., B.T. and O.V. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Boris Turk or Olga Vasiljeva.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3236 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhaylov, G., Mikac, U., Magaeva, A. et al. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nature Nanotech 6, 594–602 (2011). https://doi.org/10.1038/nnano.2011.112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.112

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research