Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct mapping of the solid–liquid adhesion energy with subnanometre resolution

Abstract

Solid–liquid interfaces play a fundamental role in surface electrochemistry1, catalysis2, wetting3, self-assembly4 and biomolecular functions5. The interfacial energy determines many of the properties of such interfaces, including the arrangement of the liquid molecules at the surface of the solid. Diffraction techniques are often used to investigate the structure of solid–liquid interfaces6, but measurements of irregular or inhomogeneous interfaces remain challenging. Here, we report atomic- and molecular-resolution images of various organic and inorganic samples in liquids, obtained with a commercial atomic force microscope operated dynamically with small-amplitude modulation. This approach uses the structured liquid layers close to the solid to enhance lateral resolution. We propose a model to explain the mechanism dominating the image formation, and show that the energy dissipated during this process is related to the interfacial energy through a readily achievable calibration curve. Our topographic images and interfacial energy maps could provide insights into important interfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SAM-AFM imaging of the water–mica interface with atomic resolution.
Figure 2: High-resolution images of substrates in water and DMSO.
Figure 3: Histograms and scatter plots comparing measurement of WSL for various substrates.

Similar content being viewed by others

References

  1. Wandelt, K. & Thurgate, S. Solid–Liquid Interfaces: Macroscopic Phenomena, Microscopic Understanding (Springer, 2003).

    Book  Google Scholar 

  2. Hoffmann, M. R., Martin, S. T., Choi, W. Y. & Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995).

    Article  CAS  Google Scholar 

  3. Centrone, A. et al. The role of nanostructure in the wetting behavior of mixed-monolayer-protected metal nanoparticles. Proc. Natl Acad. Sci. USA 105, 9886–9891 (2008).

    Article  CAS  Google Scholar 

  4. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  CAS  Google Scholar 

  5. Frauenfelder, H., Fenimore, P. W., Chen, G. & McMahon, B. H. Protein folding is slaved to solvent motions. Proc. Natl Acad. Sci. USA 103, 15469–15472 (2006).

    Article  CAS  Google Scholar 

  6. Fenter, P. & Sturchio, N. C. Mineral-water interfacial structures revealed by synchrotron X-ray scattering. Prog. Surf. Sci. 77, 171–258 (2004).

    Article  CAS  Google Scholar 

  7. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  Google Scholar 

  8. Quate, C. F. The AFM as a tool for surface imaging. Surf. Sci. 299–300, 980–995 (1994).

    Article  Google Scholar 

  9. Giessibl, F. J. Atomic resolution of the silicon (111)–(7×7) surface by atomic force microscopy. Science 267, 68–71 (1995).

    Article  CAS  Google Scholar 

  10. Hembacher, S., Giessibl, F. J. & Mannhart, J. Force microscopy with light-atom probes. Science 305, 380–383 (2004).

    Article  CAS  Google Scholar 

  11. Sugawara, Y., Ohta, M., Ueyama, H. & Morita, S. Defect motion on an InP(110) surface observed with noncontact atomic force microscopy. Science 270, 1646–1648 (1995).

    Article  CAS  Google Scholar 

  12. Sugimoto, Y. et al. Chemical identification of individual surface atoms by atomic force microscopy. Nature 446, 64–67 (2007).

    Article  CAS  Google Scholar 

  13. Gan, Y. Atomic and subnanometer resolution in ambient conditions by atomic force microscopy. Surf. Sci. Rep. 64, 99–121 (2009).

    Article  CAS  Google Scholar 

  14. Oesterhelt, F. et al. Unfolding pathways of individual bacteriorhodopsins. Science 288, 143–146 (2000).

    Article  CAS  Google Scholar 

  15. Ohnesorge, F. & Binnig, G. True atomic resolution by atomic force microscopy through repulsive and attractive forces. Science 260, 1451–1456 (1993).

    Article  CAS  Google Scholar 

  16. Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003).

    Article  CAS  Google Scholar 

  17. García, R. & Pérez, R. Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47, 197–301 (2002).

    Article  Google Scholar 

  18. O'Shea, S. J., Lantz, M. A. & Tokumoto, H. Damping near solid–liquid interfaces measured with atomic force microscopy. Langmuir 15, 922–925 (1999).

    Article  CAS  Google Scholar 

  19. Li, T.-D. & Riedo, E. Nonlinear viscoelastic dynamics of nanoconfined wetting liquids. Phys. Rev. Lett. 100, 106102 (2008).

    Article  Google Scholar 

  20. Fukuma, T., Ueda, Y., Yoshioka, S. & Asakawa, H. Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy. Phys. Rev. Lett. 104, 016101 (2010).

    Article  Google Scholar 

  21. Fukuma, T., Higgins, M. J. & Jarvis, S. P. Direct imaging of lipid-ion network formation under physiological conditions by frequency modulation atomic force microscopy. Phys. Rev. Lett. 98, 106101 (2007).

    Article  Google Scholar 

  22. Israelachvili, J. & Wennerstrom, H. Role of hydration and water structure in biological and colloidal interactions. Nature 379, 219–225 (1996).

    Article  CAS  Google Scholar 

  23. Butt, H.-J. & Stark, R. Atomic force microscopy in structured liquids: remark on the interpretation of jumps in force curves. Coll. Surf. A 252, 165–168 (2005).

    Article  CAS  Google Scholar 

  24. Dupré, A. Théorie Mécanique de la Chaleur (Gauthier-Villars, 1869).

    Google Scholar 

  25. Yu, C. J. et al. Order in molecular liquids near solid–liquid interfaces. Appl. Surf. Sci. 182, 231–235 (2001).

    Article  CAS  Google Scholar 

  26. Israelachvili, J. N. Intermolecular and Surface Forces, With Applications to Colloidal and Biological Systems 2nd edn (Academic Press, 1992).

    Google Scholar 

  27. Poynor, A. et al. How water meets a hydrophobic surface. Phys. Rev. Lett. 97, 266101 (2006).

    Article  Google Scholar 

  28. Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005).

    Article  CAS  Google Scholar 

  29. Cleveland, J. P., Anczykowski, B., Schmid, A. E. & Elings, V. B. Energy dissipation in tapping-mode atomic force microscopy. Appl. Phys. Lett. 72, 2613–2615 (1998).

    Article  CAS  Google Scholar 

  30. Fenter, P., Park, C., Nagy, K. L. & Sturchio, N. C. Resonant anomalous X-ray reflectivity as a probe of ion adsorption at solid–liquid interfaces. Thin Solid Films 515, 5654–5659 (2007).

    Article  CAS  Google Scholar 

  31. Kuna, J. J. et al. The effect of nanometre-scale structure on interfacial energy. Nature Mater. 8, 837–842 (2009).

    Article  CAS  Google Scholar 

  32. Ingebrigtsen, T. & Toxvaerd, S. Contact angles of Lennard–Jones liquids and droplets on planar surfaces. J. Phys. Chem. C 111, 8518–8523 (2007).

    Article  CAS  Google Scholar 

  33. Melcher, J. et al. Origins of phase contrast in the atomic force microscope in liquids. Proc. Natl Acad. Sci. USA 106, 13655–13660 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K.V. acknowledges support from the Swiss National Science Foundation. F.S. acknowledges the generous support of the Packard Foundation, and from the Department of Defence Defense Threat Reduction Agency (BRBAA08-L-2-0031). E.T. acknowledges support by Consiglio Nazionale delle Ricerche (CNR) through Eurocore ‘Friction and Adhesion in Nanomechanical Systems’ (FANAS) project Atomic Friction (AFRI).

Author information

Authors and Affiliations

Authors

Contributions

K.V. and F.S. designed the experiment. Sample preparation, measurements and data analysis were carried out by K.V. (AFM) and J.K. (CA). The model was developed by K.V., with contributions from S.A.C., E.T., J.K. and F.S. K.V. and F.S. wrote the paper. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to Kislon Voïtchovsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1079 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voïtchovsky, K., Kuna, J., Contera, S. et al. Direct mapping of the solid–liquid adhesion energy with subnanometre resolution. Nature Nanotech 5, 401–405 (2010). https://doi.org/10.1038/nnano.2010.67

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.67

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing