Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds

Abstract

Nitrogen-vacancy colour centres in diamond can undergo strong, spin-sensitive optical transitions under ambient conditions, which makes them attractive for applications in quantum optics1, nanoscale magnetometry2,3 and biolabelling4. Although nitrogen-vacancy centres have been observed in aggregated detonation nanodiamonds5 and milled nanodiamonds6, they have not been observed in very small isolated nanodiamonds7. Here, we report the first direct observation of nitrogen-vacancy centres in discrete 5-nm nanodiamonds at room temperature, including evidence for intermittency in the luminescence (blinking) from the nanodiamonds. We also show that it is possible to control this blinking by modifying the surface of the nanodiamonds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of discrete 5-nm diamonds on a glass coverslip.
Figure 2: Luminescence and magnetic resonance spectra from detonation nanodiamond.
Figure 3: Detailed analysis of blinking statistics from an NV centre in detonation nanodiamond.
Figure 4: Theoretical characterization of the structural and electronic disorder.

Similar content being viewed by others

References

  1. Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

    Article  CAS  Google Scholar 

  2. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  CAS  Google Scholar 

  3. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    Article  CAS  Google Scholar 

  4. Chang, Y.-R. et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nature Nanotech. 3, 284–288 (2008).

    CAS  Google Scholar 

  5. Smith, B. R. et al. Five-nanometer diamond with luminescent nitrogen-vacancy defect centers. Small 5, 1649–1653 (2009).

    Article  CAS  Google Scholar 

  6. Tisler, J. et al. Fluorescence and spin properties of defects in single digit nanodiamonds. ACS Nano 3, 1959–1965 (2009).

    Article  CAS  Google Scholar 

  7. Barnard, A. S. & Sternberg, M. Substitutional nitrogen in nanodiamond and bucky-diamond particles. J. Phys. Chem. B 109, 17107–17112 (2005).

    Article  CAS  Google Scholar 

  8. Kruger, A. et al. Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon 43, 1722–1730 (2005).

    Article  Google Scholar 

  9. Mochalin, V. N. & Gogotsi, Y. Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J. Am. Chem. Soc. 131, 4594–4595 (2009).

    Article  CAS  Google Scholar 

  10. Holt, K. B. Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing. Phil. Trans. R. Soc. A 365, 2845–2861 (2007).

    Article  CAS  Google Scholar 

  11. Bradac, C., Gaebel, T., Naidoo, N., Rabeau, J. R. & Barnard, A. S. Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale. Nano Lett. 9, 3555–3564 (2009).

    Article  CAS  Google Scholar 

  12. Rabeau, J. R. et al. Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals. Nano Lett. 7, 3433–3437 (2007).

    Article  CAS  Google Scholar 

  13. Vlasov, I. et al. Nitrogen and luminsecent nitrogen-vacancy defects in detonation nanodiamond. Small 6, 687–694 (2010).

    Article  CAS  Google Scholar 

  14. Boudou, J. P. et al. High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20, 235602 (2009).

    Article  Google Scholar 

  15. Smith, B. R., Gruber, D. & Plakhotnik, T. The effects of surface oxidation on luminescence of nano diamonds. Diamond Relat. Mater. 19, 314–318 (2010).

    Article  CAS  Google Scholar 

  16. Gaebel, T. et al. Photochromism in single nitrogen-vacancy defect in diamond. Appl. Phys. B 82, 243–246 (2006).

    Article  CAS  Google Scholar 

  17. Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A. & Nesbitt, D. J. ‘On’/‘off’ fluorescence intermittency of single semiconductor quantum dots. J. Chem. Phys. 115, 1028–1040 (2001).

    Article  CAS  Google Scholar 

  18. Tang, J. & Marcus, R. A. Diffusion-controlled electron transfer processes and power-law statistics of fluorescence intermittency of nanoparticles. Phys. Rev. Lett. 95, 107401 (2005).

    Article  Google Scholar 

  19. Stefani, F. D., Hoogenboom, J. P. & Barkai, E. Beyond quantum jumps: blinking nanoscale light emitters. Phys. Today 34–39 (February 2009).

  20. Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).

    Article  CAS  Google Scholar 

  21. Hoogenboom, J. P., van Dijk, E., Hernando, J., van Hulst, N. F. & Garcia-Parajo, M. F. Power-law-distributed dark states are the main pathway for photobleaching of single organic molecules. Phys. Rev. Lett. 95, 097401 (2005).

    Article  Google Scholar 

  22. Mason, M. D., Credo, G. M., Weston, K. D. & Buratto, S. K. Luminescence of individual porous Si chromophores. Phys. Rev. Lett. 80, 5405–5408 (1998).

    Article  CAS  Google Scholar 

  23. Cichos, F., von Borczyskowski, C. & Orrit, M. Power-law intermittency of single emitters. Curr. Opin. Colloid Interface Sci. 12, 272–284 (2007).

    Article  CAS  Google Scholar 

  24. Frantsuzov, P., Kuno, M., Janko, B. & Marcus, R. A. Universal emission intermittency in quantum dots, nanorods and nanowires. Nature Phys. 4, 519–522 (2008).

    Article  Google Scholar 

  25. Gomez, D. E., van Embden, J., Mulvaney, P., Fernee, M. J. & Rubinsztein-Dunlop, H. Exciton–trion transitions in single CdSe–CdS core–shell nanocrystals. ACS Nano 3, 2281–2287 (2009).

    Article  CAS  Google Scholar 

  26. Zhang, K., Chang, H. Y., Fu, A. H., Alivisatos, A. P. & Yang, H. Continuous distribution of emission states from single CdSe/ZnS quantum dots. Nano Lett. 6, 843–847 (2006).

    Article  Google Scholar 

  27. Palosz, B. et al. Investigation of relaxation of nanodiamond surface in real and reciprocal spaces. Diamond Relat. Mater. 15, 1813–1817 (2006).

    Article  CAS  Google Scholar 

  28. Osswald, S., Yushin, G., Mochalin, V., Kucheyev, S. O. & Gogotsi, Y. Control of sp(2)/sp(3) carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 128, 11635–11642 (2006).

    Article  CAS  Google Scholar 

  29. Iakoubovskii, K. et al. Structure and defects of detonation synthesis nanodiamond. Diamond Relat. Mater. 9, 861–865 (2000).

    Article  CAS  Google Scholar 

  30. Russo, S. P., Barnard, A. S. & Snook, I. K. Hydrogenation of nanodiamond surfaces: structure and effects on crystalline stability. Surf. Rev. Lett. 10, 233–239 (2003).

    Article  CAS  Google Scholar 

  31. Morita, Y. et al. A facile and scalable process for size-controllable separation of nanodiamond particles as small as 4 nm. Small 4, 2154–2157 (2008).

    Article  CAS  Google Scholar 

  32. Ushizawa, K. et al. Covalent immobilization of DNA on diamond and its verification by diffuse reflectance infrared spectroscopy. Chem. Phys. Lett. 351, 105–108 (2002).

    Article  CAS  Google Scholar 

  33. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article  CAS  Google Scholar 

  34. Porezag, D., Frauenheim, T., Kohler, T., Seifert, G. & Kaschner, R. Construction of tight-binding-like potentials on the basis of density-functional theory—application to carbon. Phys. Rev. B 51, 12947–12957 (1995).

    Article  CAS  Google Scholar 

  35. Barnard, A. S. & Sternberg, M. Crystallinity and surface electrostatics of diamond nanocrystals. J. Mater. Chem. 17, 4811–4819 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank N. Manson and F. Treussart for useful discussions, D. Birch for TEM measurements and E. Carter for Raman spectroscopy measurements. T.G. is funded by a Macquarie University Research Fellowship, C.B. is funded by a Macquarie University Research Excellence Scholarship, and J.R.R is funded by an ARC Future Fellowship. The work was funded in part by the Australian Research Council (DP0772286 and DP0771676).

Author information

Authors and Affiliations

Authors

Contributions

C.B., T.G., A.V.Z. and J.R.R. conceived and designed the experiments, analysed the data, contributed materials/analysis tools and co-wrote the paper. T.P. analysed the data and contributed analysis tools. M.J.S. contributed ESR equipment and expertise. A.S.B. carried out DFTB simulations and analysed simulation data. N.N., J.T., L.B. and J.R.R. designed the deaggregation protocol. N.N. prepared the nanodiamond samples. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to A. V. Zvyagin or J. R. Rabeau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2830 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradac, C., Gaebel, T., Naidoo, N. et al. Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nature Nanotech 5, 345–349 (2010). https://doi.org/10.1038/nnano.2010.56

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.56

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing