Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Plasmonic Luneburg and Eaton lenses

Abstract

Plasmonics takes advantage of the properties of surface plasmon polaritons, which are localized or propagating quasiparticles in which photons are coupled to the quasi-free electrons in metals. In particular, plasmonic devices can confine light in regions with dimensions that are smaller than the wavelength of the photons in free space, and this makes it possible to match the different length scales associated with photonics and electronics in a single nanoscale device1. Broad applications of plasmonics that have been demonstrated to date include biological sensing2, sub-diffraction-limit imaging, focusing and lithography3,4,5 and nano-optical circuitry6,7,8,9,10. Plasmonics-based optical elements such as waveguides, lenses, beamsplitters and reflectors have been implemented by structuring metal surfaces7,8,11,12 or placing dielectric structures on metals6,13,14,15 to manipulate the two-dimensional surface plasmon waves. However, the abrupt discontinuities in the material properties or geometries of these elements lead to increased scattering of surface plasmon polaritons, which significantly reduces the efficiency of these components. Transformation optics provides an alternative approach to controlling the propagation of light by spatially varying the optical properties of a material16,17. Here, motivated by this approach, we use grey-scale lithography to adiabatically tailor the topology of a dielectric layer adjacent to a metal surface to demonstrate a plasmonic Luneburg lens that can focus surface plasmon polaritons. We also make a plasmonic Eaton lens that can bend surface plasmon polaritons. Because the optical properties are changed gradually rather than abruptly in these lenses, losses due to scattering can be significantly reduced in comparison with previously reported plasmonic elements.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plasmonic Luneburg lens.
Figure 2: Fluorescence images of a plasmonic Luneburg lens.
Figure 3: Broadband performance of a plasmonic Luneburg lens.
Figure 4: Numerical simulations of a plasmonic Eaton lens.
Figure 5: Demonstration of a plasmonic Eaton lens.

Similar content being viewed by others

References

  1. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  CAS  Google Scholar 

  2. Nie, S. M. & Emery, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  CAS  Google Scholar 

  3. Fang, N., Lee, H, Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    Article  CAS  Google Scholar 

  4. Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).

    Article  Google Scholar 

  5. Srituravanich, W. et al. Flying plasmonic lens in the near field for high-speed nanolithography, Nature Nanotech. 3, 733–737 (2008).

    Article  CAS  Google Scholar 

  6. Hohenau, A. et al. Dielectric optical elements for surface plasmons. Opt. Lett. 30, 893–895 (2005).

    Article  CAS  Google Scholar 

  7. Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J.-Y. & Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

    Article  CAS  Google Scholar 

  8. Drezet, A. et al. Plasmonic crystal demultiplexer and multiports. Nano Lett. 7, 1697–1700 (2007).

    Article  CAS  Google Scholar 

  9. Engheta, N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317, 1698–1702 (2007).

    Article  CAS  Google Scholar 

  10. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  CAS  Google Scholar 

  11. Bozhevolnyi, S. I., Erland, J., Leosson, K., Skovgaard, P. M. W. & Hvam, J. M. Waveguiding in surface plasmon polariton band gap structures. Phys. Rev. Lett. 86, 3008–3011 (2001).

    Article  CAS  Google Scholar 

  12. Ditlbacher, H., Krenn, J. R., Schider, G., Leitner, A. & Aussenegg, F. R. Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett. 81, 1762–1764 (2002).

    Article  CAS  Google Scholar 

  13. Smolyaninov, I. I., Elliott, J., Zayats, A. V. & Davis, C. C. Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons. Phys. Rev. Lett. 94, 057401 (2005).

    Article  Google Scholar 

  14. Devaux, E. et al. Refractive micro-optical elements for surface plasmons: from classical to gradient index optics. Opt. Express 18, 20610–20619 (2010).

    Article  CAS  Google Scholar 

  15. Smolyaninov, I. I. Transformational optics of plasmonic metamaterials. New J. Phys. 10, 115033 (2008).

    Article  Google Scholar 

  16. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Article  CAS  Google Scholar 

  17. Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

    Article  CAS  Google Scholar 

  18. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    Article  CAS  Google Scholar 

  19. Valentine, J., Li, J., Zentgraf, T., Bartal, G. & Zhang, X. An optical cloak made of dielectrics. Nature Mater. 8, 568–571 (2009).

    Article  CAS  Google Scholar 

  20. Gabrielli, L. H., Cardenas, J., Poitras, C. B. & Lipson, M. Silicon nanostructure cloak operating at optical frequencies. Nature Photon. 43, 461–463 (2009).

    Article  Google Scholar 

  21. Cheng, Q., Cui, T. J., Jiang, W. X. & Cai, B. G. An omnidirectional electromagnetic absorber made of metamaterials. New J. Phys. 12, 063006 (2010).

    Article  Google Scholar 

  22. Zentgraf, T., Valentine, J., Tapia, N., Li, J. & Zhang, X. An optical ‘Janus’ device for integrated photonics. Adv. Mater. 22, 2561–2564 (2010).

    Article  CAS  Google Scholar 

  23. Kundtz, N. & Smith, D. R. Extreme-angle broadband metamaterial lens. Nature Mater. 9, 129–132 (2010).

    Article  CAS  Google Scholar 

  24. Luneburg, R. Mathematical Theory of Optics (Brown University, 1944).

    Google Scholar 

  25. Eaton, J. E. On spherically symmetric lenses. Trans. IRE Antennas Propag. 4, 66–71 (1952).

    Article  Google Scholar 

  26. Huidobro, P. A., Nesterov, M. L., Martín-Moreno, L. & García-Vidal, F. J. Transformation optics for plasmonics. Nano Lett. 10, 1985–1990 (2010).

    Article  CAS  Google Scholar 

  27. Liu, Y., Zentgraf, T., Bartal, G. & Zhang, X. Transformational plasmon optics. Nano Lett. 10, 1991–1997 (2010).

    Article  CAS  Google Scholar 

  28. Renger, J. et al. Hidden progress: broadband plasmonic invisibility. Opt. Express 18, 15757–15768 (2010).

    Article  Google Scholar 

  29. Aubry, A. et al. Plasmonic light-harvesting devices over the whole visible spectrum. Nano Lett. 10, 2574–2579 (2010).

    Article  CAS  Google Scholar 

  30. Danner, A. J. & Leonhardt, U. Lossless design of an Eaton lens and invisible sphere by transformation optics with no bandwidth limitation Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, USA, 31 May–5 June 2009.

  31. Ditlbacher, H. et al. Fluorescence imaging of surface plasmon fields. Appl. Phys. Lett. 80, 404–406 (2002).

    Article  CAS  Google Scholar 

  32. Drezet, A. et al. Leakage radiation microscopy of surface plasmon polaritons. Mater. Sci. Eng. B 149, 220–229 (2008).

    Article  CAS  Google Scholar 

  33. Radko, I. P. et al. Effciency of local surface plasmon polariton excitation on ridges. Phys. Rev. B 78, 115115 (2008).

    Article  Google Scholar 

  34. De Leon, I. & Berini, P. Amplification of long-range surface plasmons by a dipolar gain medium. Nature Photon. 4, 382–387 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from the US Army Research Office (MURI programme W911NF-09-1-0539) and the US National Science Foundation (NSF Nanoscale Science and Engineering Center CMMI-0751621).

Author information

Authors and Affiliations

Authors

Contributions

T.Z., Y.L. and J.V. conceived and designed the experiments. T.Z. and M.H.M. performed the experiments and analysed the data. Y.L. designed the structures and performed the numerical simulations. J.V. and M.H.M. fabricated the samples. X.Z. guided the theoretical and experimental work. All authors discussed the results and co-wrote the manuscript.

Corresponding author

Correspondence to Xiang Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zentgraf, T., Liu, Y., Mikkelsen, M. et al. Plasmonic Luneburg and Eaton lenses. Nature Nanotech 6, 151–155 (2011). https://doi.org/10.1038/nnano.2010.282

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.282

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing