Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme

Abstract

Gold nanoparticles are useful in biomedical applications due to their distinct optical properties and high chemical stability1,2,3,4,5. Reports of the biogenic formation of gold colloids from gold complexes has also led to an increased level of interest in the biomineralization of gold6,7,8,9,10,11,12,13. However, the mechanism responsible for biomolecule-directed gold nanoparticle formation remains unclear due to the lack of structural information about biological systems and the fast kinetics of biomimetic chemical systems in solution. Here we show that intact single crystals of lysozyme can be used to study the time-dependent, protein-directed growth of gold nanoparticles. The protein crystals slow down the growth of the gold nanoparticles, allowing detailed kinetic studies to be carried out, and permit a three-dimensional structural characterization that would be difficult to achieve in solution. Furthermore, we show that additional chemical species can be used to fine-tune the growth rate of the gold nanoparticles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time-dependent, protein-directed growth of gold nanoparticles in single crystals.
Figure 2: HAADF-STEM images of the three-dimensional distribution of gold nanoparticles within lysozyme single crystals.
Figure 3: Schematic of gold nanoparticle growth within a lysozyme single crystal.

Similar content being viewed by others

References

  1. Daniel, M. C. & Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004).

    Article  CAS  Google Scholar 

  2. Rosi, N. L. & Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562 (2005).

    Article  CAS  Google Scholar 

  3. De, M. et al. Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein. Nature Chem. 1, 461–465 (2009).

    Article  CAS  Google Scholar 

  4. Murphy, C. J. et al. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res. 41, 1721–1730 (2008).

    Article  CAS  Google Scholar 

  5. Xie, J. P., Zheng, Y. G. & Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 131, 888–889 (2009).

    Article  CAS  Google Scholar 

  6. Reith, F., Rogers, S. L., McPhail, D. C. & Webb, D. Biomineralization of gold: biofilms on bacterioform gold. Science 313, 233–236 (2006).

    Article  CAS  Google Scholar 

  7. Reith, F. et al. Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc. Natl Acad. Sci. USA 106, 17757–17762 (2009).

    Article  CAS  Google Scholar 

  8. Lengke, M. F. & Southam, G. The effect of thiosulfate-oxidizing bacteria on the stability of the gold–thiosulfate complex. Geochim. Cosmochim. Acta 69, 3759–3772 (2005).

    Article  CAS  Google Scholar 

  9. Karthikeyan, S. & Beveridge, T. J. Pseudomonas aeruginosa biofilms react with and precipitate toxic soluble gold. Environ. Microbiol. 4, 667–675 (2002).

    Article  CAS  Google Scholar 

  10. Kashefi, K., Tor, J. M., Nevin, K. P. & Lovley, D. R. Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea. Appl. Environ. Microbiol. 67, 3275–3279 (2001).

    Article  CAS  Google Scholar 

  11. Karamushka, V. I., Ulberg, Z. R. & Gruzina, T. G. The role of membrane processes in bacterial accumulation of Au(III) and Au(0). Ukr. Biokhimicheskii Zhurnal 62, 76–82 (1990).

    CAS  Google Scholar 

  12. Carney, C. K., Harry, S. R., Sewell, S. L. & Wright, D. W. Detoxification biominerals. Top. Curr. Chem. 270, 155–185 (2007).

    Article  CAS  Google Scholar 

  13. Mann, S. (eds) Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry (Oxford Univ. Press, 2001).

  14. Meldrum, F. C., Wade, V. J., Nimmo, D. L., Heywood, B. R. & Mann, S. Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature 349, 684–687 (1991).

    Article  CAS  Google Scholar 

  15. Uchida, M. et al. Biological containers: protein cages as multifunctional nanoplatforms. Adv. Mater. 19, 1025–1042 (2007).

    Article  CAS  Google Scholar 

  16. Medalsy, I. et al. SP1 protein-based nanostructures and arrays. Nano Lett. 8, 473–477 (2008).

    Article  CAS  Google Scholar 

  17. Butts, C. A. et al. Directing noble metal ion chemistry within a designed ferritin protein. Biochemistry 47, 12729–12739 (2008).

    Article  CAS  Google Scholar 

  18. Ueno, T. et al. Process of accumulation of metal ions on the interior surface of apo-ferritin: crystal structures of a series of apo-ferritins containing variable quantities of Pd(II) Ions. J. Am. Chem. Soc. 131, 5094–5100 (2009).

    Article  CAS  Google Scholar 

  19. Ueno, T., Abe, S., Yokoi, N. & Watanabe, Y. Coordination design of artificial metalloproteins utilizing protein vacant space. Coord. Chem. Rev. 251, 2717–2731 (2007).

    Article  CAS  Google Scholar 

  20. Dickerson, M. B., Sandhage, K. H. & Naik, R. R. Protein- and peptide-directed syntheses of inorganic materials. Chem. Rev. 108, 4935–4978 (2008).

    Article  CAS  Google Scholar 

  21. Margolin, A. L. & Navia, M. A. Protein crystals as novel catalytic materials. Angew. Chem. Int. Ed. 40, 2205–2222 (2001).

    Article  Google Scholar 

  22. Koshiyama, T. et al. Modification of porous protein crystals in development of biohybrid materials. Bioconjugate Chem. 21, 264–269 (2010).

    Article  CAS  Google Scholar 

  23. Falkner, J. C. et al. Virus crystals as nanocomposite scaffolds. J. Am. Chem. Soc. 127, 5274–5275 (2005).

    Article  CAS  Google Scholar 

  24. Guli, M., Lambert, E. M., Li, M. & Mann, S. Template-directed synthesis of nanoplasmonic arrays by intracrystalline metalization of cross-linked lysozyme crystals. Angew. Chem. Int. Ed. 49, 520–523 (2010).

    Article  CAS  Google Scholar 

  25. Jolles, P. & Jolles, J. Whats new in lysozyme research—always a model system, today as yesterday. Mol. Cell. Biochem. 63, 165–189 (1984).

    Article  CAS  Google Scholar 

  26. Sanders, L. K. et al. Control of electrostatic interactions between F-actin and genetically modified lysozyme in aqueous media. Proc. Natl Acad. Sci. USA 104, 15994–15999 (2007).

    Article  CAS  Google Scholar 

  27. Kawamichi, T., Haneda, T., Kawano, M. & Fujita, M. X-ray observation of a transient hemiaminal trapped in a porous network. Nature 461, 633–635 (2009).

    Article  CAS  Google Scholar 

  28. Li, H. Y., Xin, H. L., Muller, D. A. & Estroff, L. A. Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels. Science 326, 1244–1247 (2009).

    Article  CAS  Google Scholar 

  29. Hodzhaoglu, F., Kurniawan, F., Mirsky, V. & Nanev, C. Gold nanoparticles induce protein crystallization. Cryst. Res. Technol. 43, 588–593 (2008).

    Article  CAS  Google Scholar 

  30. Arslan, I., Yates, T. J. V., Browning, N. D. & Midgley, P. A. Embedded nanostructures revealed in three dimensions. Science 309, 2195–2198 (2005).

    Article  CAS  Google Scholar 

  31. Browning, N. D., Chisholm, M. F. & Pennycook, S. J. Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143–146 (1993).

    Article  CAS  Google Scholar 

  32. Puddephatt, R. J. (eds) The Chemistry of Gold (Topics in Inorganic and General Chemistry, Monograph 16) (Elsevier Scientific Publishing, 1978).

  33. Pyykko, P. Theoretical chemistry of gold. Angew. Chem. Int. Ed. 43, 4412–4456 (2004).

    Article  Google Scholar 

  34. Ralle, M., Lutsenko, S. & Blackburn, N. J. X-ray absorption spectroscopy of the copper chaperone HAH1 reveals a linear two-coordinate Cu(I) center capable of adduct formation with exogenous thiols and phosphines. J. Biol. Chem. 278, 23163–23170 (2003).

    Article  CAS  Google Scholar 

  35. Lichtenegger, H. C., Schoberl, T., Bartl, M. H., Waite, H. & Stucky, G. D. High abrasion resistance with sparse mineralization: copper biomineral in worm jaws. Science 298, 389–392 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation (CMMI 0749028 and DMR-0117792). The authors thank C. Lei and J. Wen for help with the (S)TEM imaging, L.A. Miller for the preparation of microtome samples and 75 kV TEM imaging, J. Soares for solid-state absorption spectroscopic measurements, M. Sardela for XRD measurements, and Y.-W. Lin, N.M. Marshall, S.-L. Tian, H.E. Ihms and K.-D. Miner for helpful discussions. J.Z. and J.M.Z. are supported by DOE DEFG02-01ER45923. S.H. and I.M.R. acknowledge support from the US Department of Energy (grant DE-FC36-05GO15064). (S)TEM experiments were carried out in part in the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois.

Author information

Authors and Affiliations

Authors

Contributions

H.W., Z.W. and Y.L. designed the research. H.W., Z.W., J.Z., Y.-G.G., L.Y. and H.R. performed the research. H.W., Z.W., J.Z., S.H., Y.-G.G., L.Y., H.R., L.H.T., H.X., C.H., I.M.R., J.-M.Z. and Y.L. analysed the data. All authors co-wrote the paper.

Corresponding authors

Correspondence to Ian M. Robertson, Jian-Min Zuo or Yi Lu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, H., Wang, Z., Zhang, J. et al. Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme. Nature Nanotech 6, 93–97 (2011). https://doi.org/10.1038/nnano.2010.280

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.280

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research