Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality

Abstract

All-optical signal processing enables modulation and transmission speeds not achievable using electronics alone1,2. However, its practical applications are limited by the inherently weak nonlinear effects that govern photon–photon interactions in conventional materials, particularly at high switching rates3. Here, we show that the recently discovered nonlocal optical behaviour of plasmonic nanorod metamaterials4 enables an enhanced, ultrafast, nonlinear optical response. We observe a large (80%) change of transmission through a subwavelength thick slab of metamaterial subjected to a low control light fluence of 7 mJ cm−2, with switching frequencies in the terahertz range. We show that both the response time and the nonlinearity can be engineered by appropriate design of the metamaterial nanostructure. The use of nonlocality to enhance the nonlinear optical response of metamaterials, demonstrated here in plasmonic nanorod composites, could lead to ultrafast, low-power all-optical information processing in subwavelength-scale devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plasmonic nanorod metamaterial and its optical properties.
Figure 2: Modifications of the optical properties of the metamaterial under control light illumination.
Figure 3: Intensity, spectral and angular dependences of the transient optical response of the metamaterial.

Similar content being viewed by others

References

  1. Gibbs, H. M. Optical Bistability: Controlling Light with Light (Academic, 1985).

  2. Almeida, V. A., Barrios, C. A., Panepucci, R. R. & Lipson, M. All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004).

    Article  CAS  Google Scholar 

  3. Boyd, R. W. Nonlinear Optics (Academic, 2003).

  4. Pollard, R. J. et al. Optical nonlocalities and additional waves in epsilon-near-zero metamaterials. Phys. Rev. Lett. 102, 127405 (2009).

    Article  CAS  Google Scholar 

  5. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1987).

  6. Zayats, A. V., Smolyaninov, I. I. & Maradudin, A. A. Nano-optics of surface plasmon polaritons. Phys. Rep. 408, 131–314 (2005).

    Article  CAS  Google Scholar 

  7. Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  CAS  Google Scholar 

  8. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nat. Mat. 7, 442–453 (2008).

    Article  CAS  Google Scholar 

  9. Sun, C. K., Vallée, F., Acioli, L., Ippen, E. P. & Fujimoto, J. G. Femtosecond investigation of electron thermalization in gold. Phys. Rev. B 48, 12365–12368 (1993).

    Article  CAS  Google Scholar 

  10. Fatti, N. D., Bouffanais, R., Vallée, F. & Flytzanis, C. Nonequilibrium electron interactions in metal films. Phys. Rev. Lett. 81, 922–925 (1998).

    Article  Google Scholar 

  11. Pacifici, D., Lezec, H. J. & Atwater, H. A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photon. 1, 402–406 (2007).

  12. Pala, R. A., Shimizu, K. T., Melosh, N. A. & Brongersma, M. L. A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett. 8, 1506–1510 (2008).

    Article  CAS  Google Scholar 

  13. Smolyaninov, I. I., Davis, C. C. & Zayats, A. V. Light-controlled photon tunneling. Appl. Phys. Lett. 81, 3314–3316 (2002).

    Article  CAS  Google Scholar 

  14. Wurtz, G. A., Pollard R. & Zayats, A. V. Optical bistability in nonlinear surface plasmon polaritonic crystals. Phys. Rev. Lett. 97, 057402 (2006).

    Article  CAS  Google Scholar 

  15. Rotenberg, N., Betz, M. & van Driel, H. M. Ultrafast control of grating-assisted light coupling to surface plasmons. Opt. Lett. 33, 2137–2139 (2008).

    Article  Google Scholar 

  16. Varnavski, O. P., Goodson, T., Mohamed, M. B. & El-Sayed, M. A. Femtosecond excitation dynamics in gold nanospheres and nanorods. Phys. Rev. B 72, 235405 (2005).

    Article  Google Scholar 

  17. Perner, M., Gresillon, S., März, J., von Plessen, G. & Feldmann, J. Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles. Phys. Rev. Lett. 85, 792–795 (2000).

    Article  CAS  Google Scholar 

  18. Wurtz, G. A. & Zayats, A. V. Nonlinear surface plasmon polaritonic crystals. Laser Photon. Rev. 2, 125–135 (2008).

    Article  CAS  Google Scholar 

  19. MacDonald, K. F., Samson, Z. L., Stockman, M. I. & Zheludev, N. I. Ultrafast active plasmonics. Nature Photon. 3, 55–58 (2009).

    Article  CAS  Google Scholar 

  20. Link, S., Burda, C., Mohamed, M. B., Nikoobakht, B. & El-Sayed, M. A. Femtosecond transient-absorption dynamics of colloidal gold nanorods: shape independence of the electron–phonon relaxation time. Phys. Rev. B 61, 6086–6090 (2000).

    Article  CAS  Google Scholar 

  21. Samson, Z. L., MacDonald, K. F. & Zheludev, N. I. Femtosecond active plasmonics: ultrafast control of surface plasmon propagation. J. Opt. A 11, 114031 (2009).

    Article  Google Scholar 

  22. Rotenberg, N., Caspers, J. N. & van Driel, H. M. Tunable ultrafast control of plasmonic coupling to gold films. Phys. Rev. B 80, 245420 (2009).

    Article  Google Scholar 

  23. Dani, K. et al. Subpicosecond optical switching with a negative index metamaterial. Nano Lett. 9, 3565–3569 (2009).

    Article  CAS  Google Scholar 

  24. Atkinson, R. et al. Anisotropic optical properties of arrays of gold nanorods embedded in alumina. Phys. Rev. B 73, 235402 (2006).

    Article  Google Scholar 

  25. Dickson, W. et al. Dielectric-loaded plasmonic nano-antenna arrays: a metamaterial with tuneable optical properties. Phys. Rev. B 76, 115411 (2007).

    Article  Google Scholar 

  26. Evans, P. R. et al. Plasmonic core/shell nanorod arrays: sub-atto-liter controlled geometry and tunable optical properties. J. Phys. Chem. C 111, 12522–12527 (2007).

    Article  CAS  Google Scholar 

  27. Wurtz, G. A. et al. Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime. Opt. Express 16, 7460–7470 (2008).

    Article  CAS  Google Scholar 

  28. Evans, P. et al. Growth and properties of gold and nickel nanorods in thin film alumina. Nanotechnology 17, 5746–5753 (2006).

    Article  CAS  Google Scholar 

  29. Bigot, J.-Y., Halte, V., Merle, J.-C. & Daunois, A. Electron dynamics in metallic nanoparticles. Chem. Phys. 251, 181–203 (2000).

    Article  CAS  Google Scholar 

  30. Rosei, R. & Lynch, D. W. Thermomodulation spectra of Al, Au, and Cu. Phys. Rev. B 5, 3883–3894 (1972).

    Article  Google Scholar 

  31. Sönnichsen, C., Franzl, T., Wilk, T., von Plessen, G. & Feldmann, J. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88, 077402 (2002).

    Article  Google Scholar 

  32. Maier, S. A. et al. Plasmonics—a route to nanoscale optical devices. Adv. Mater. 13, 1501–1506 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work of G.A.W., R.P., W.H. and A.V.Z. was supported by the Engineering and Physical Sciences Research Council (EPSRC) (UK). G.P.W. and D.J.G. were supported through the Center for Nanoscale Materials by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (contract no. DE-AC02-06CH11357). The work of V.A.P. was supported by the National Science Foundation (ECCS-0724763) and the Office of Naval Research (N00014-07-1-0457).

Author information

Authors and Affiliations

Authors

Contributions

G.A.W. and A.V.Z. conceived and designed the experiments. G.A.W., G.P.W. and D.J.G. performed the experiments. R.P. and W.H. fabricated samples. G.A.W. G.P.W., V.A.P. and A.V.Z. analysed the data and co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to A. V. Zayats.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 879 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wurtz, G., Pollard, R., Hendren, W. et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nature Nanotech 6, 107–111 (2011). https://doi.org/10.1038/nnano.2010.278

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.278

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing