Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Scalable templated growth of graphene nanoribbons on SiC

Abstract

In spite of its excellent electronic properties, the use of graphene in field-effect transistors is not practical at room temperature without modification of its intrinsically semimetallic nature to introduce a bandgap1,2,3,4. Quantum confinement effects can create a bandgap in graphene nanoribbons, but existing nanoribbon fabrication methods are slow and often produce disordered edges that compromise electronic properties2,3,4. Here, we demonstrate the self-organized growth of graphene nanoribbons on a templated silicon carbide substrate prepared using scalable photolithography and microelectronics processing. Direct nanoribbon growth avoids the need for damaging post-processing. Raman spectroscopy, high-resolution transmission electron microscopy and electrostatic force microscopy confirm that nanoribbons as narrow as 40 nm can be grown at specified positions on the substrate. Our prototype graphene devices exhibit quantum confinement at low temperatures (4 K), and an on–off ratio of 10 and carrier mobilities up to 2,700 cm2 V−1 s−1 at room temperature. We demonstrate the scalability of this approach by fabricating 10,000 top-gated graphene transistors on a 0.24‐cm2 SiC chip, which is the largest density of graphene devices reported to date.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Process for tailoring of the SiC crystal for selective graphene growth and device fabrication.
Figure 2: Raman and TEM observations of graphene grown selectively on SiC nanofacet (11̄0n) with n ≈ 8.
Figure 3: AFM/EFM observation of self-organized epitaxial graphene nanoribbons of width 40 nm.
Figure 4: Electronic transport measurement of graphene nanoribbons.
Figure 5: Graphene transistor array with a density of 40,000 devices per cm2 prepared on SiC(0001̄).

Similar content being viewed by others

References

  1. Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).

    Article  CAS  Google Scholar 

  2. Han, M. Y., Brant, J. C. & Kim, P. Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 104, 056801 (2010).

    Article  Google Scholar 

  3. Tapasztó, L., Dobrik, G., Lambin, P. & Biró, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature Nanotech. 3, 397–401 (2008).

    Article  Google Scholar 

  4. Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).

    Article  CAS  Google Scholar 

  5. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    Article  CAS  Google Scholar 

  6. de Heer, W. A. et al. Epitaxial graphene. Solid State Commun. 143, 92–100 (2007).

    Article  CAS  Google Scholar 

  7. Orlita, M. et al. Approaching the dirac point in high-mobility multilayer epitaxial graphene. Phys. Rev. Lett. 101, 267601 (2008).

    Article  CAS  Google Scholar 

  8. Kedzierski, J. et al. Epitaxial graphene transistors on SiC substrates. IEEE Trans. Electron Dev. 55, 2078–2085 (2008).

    Article  CAS  Google Scholar 

  9. Li, X. et al. Top- and side-gated epitaxial graphene field effect transistors. Phys. Status Solidi A 207, 286–290 (2010).

    Article  CAS  Google Scholar 

  10. Sprinkle, M. et al. First direct observation of a nearly ideal graphene band structure. Phys. Rev. Lett. 103, 226803 (2009).

    Article  CAS  Google Scholar 

  11. Moon, J. et al. Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates. IEEE Electron Dev. Lett. 30, 650–652 (2009).

    Article  CAS  Google Scholar 

  12. Lin, Y.-M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010).

    Article  CAS  Google Scholar 

  13. Wu, X. S. et al. Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics. Phys. Rev. Lett. 101, 026801 (2008).

    Article  Google Scholar 

  14. Bekyarova, E. et al. Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups. J. Am. Chem. Soc. 131, 1336–1337 (2009).

    Article  CAS  Google Scholar 

  15. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996).

    Article  CAS  Google Scholar 

  16. Hass, J., de Heer, W. A. & Conrad, E. H. The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Matter 20, 323202 (2008).

    Article  Google Scholar 

  17. Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater. 8, 203–207 (2009).

    Article  CAS  Google Scholar 

  18. Virojanadara, C. et al. Substrate orientation: a way towards higher quality monolayer graphene growth on 6H-SiC(0001). Surf. Sci. 603, L87–L90 (2009).

    Article  CAS  Google Scholar 

  19. Robinson, J. et al. Nucleation of epitaxial graphene on SiC(0001). ACS Nano 4, 153–158 (2010).

    Article  CAS  Google Scholar 

  20. Hass, J. R. Structural Characterization of Epitaxial Graphene on Silicon Carbide. PhD thesis, Georgia Institute of Technology. Preprint at http://hdl.handle.net/1853/26654 (2008).

    Google Scholar 

  21. Wu, X. et al. Half integer quantum Hall effect in high mobility single layer epitaxial graphene. Appl. Phys. Lett. 95, 223108 (2009).

    Article  Google Scholar 

  22. Kong, H. S., Glass, J. T. & Davis, R. F. Chemical vapor deposition and characterization of 6H-SiC thin films on off-axis 6H-SiC substrates. J. Appl. Phys. 64, 2672–2679 (1988).

    Article  CAS  Google Scholar 

  23. Syväjärvi, M., Yakimova, R. & Janzn, E. Step-bunching in SiC epitaxy: anisotropy and influence of growth temperature. J. Cryst. Growth 236, 297–304 (2002).

    Article  Google Scholar 

  24. Nakajima, A., Yokoya, H., Furukawa, Y. & Yonezu, H. Step control of vicinal 6H-SiC(0001) surface by H2 etching. J. Appl. Phys. 97, 104919 (2005).

    Article  Google Scholar 

  25. Nie, S. et al. Step formation on hydrogen-etched 6H-SiC{0001} surfaces. Surf. Sci. 602, 2936–2942 (2008).

    Article  CAS  Google Scholar 

  26. Borovikov, V. & Zangwill, A. Step bunching of vicinal 6H-SiC{0001} surfaces. Phys. Rev. B 79, 245413 (2009).

    Article  Google Scholar 

  27. Nakagawa, H., Tanaka, S. & Suemune, I. Self-ordering of nanofacets on vicinal SiC surfaces. Phys. Rev. Lett. 91, 226107 (2003).

    Article  Google Scholar 

  28. Tanaka, S., Morita, K. & Hibino, H. Anisotropic layer-by-layer growth of graphene on vicinal SiC(0001) surfaces. Phys. Rev. B 81, 041406 (2010).

    Article  Google Scholar 

  29. Williams, J. R., DiCarlo, L. & Marcus, C. M. Quantum Hall effect in a gate-controlled p–n junction of graphene. Science 317, 638–641 (2007).

    Article  CAS  Google Scholar 

  30. Farmer, D. B. et al. Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett. 9, 4474–4478 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge helpful conversations with A. Zangwill, V. Borovikov and F. Ming. This research was supported by the W.M. Keck Foundation, the National Science Foundation under grant no. DMR-0820382, and the Nanoelectronics Research Initiative Institute for Nanoelectronics Discovery and Exploration (INDEX).

Author information

Authors and Affiliations

Authors

Contributions

W.A.dH. and C.B. conceived the project, and W.A.dH., C.B., M.S. and M.R. designed the experiment. W.A.dH. supervised the project, with assistance from C.B. M.S., M.R. and C.B. performed the experiment. Y.H., J.H. and B.Z. helped with sample preparation. M.R.R. helped with Al2O3 deposition. X.W. and J.H. assisted with low-temperature measurement. M.S. and C.B. analysed the data, and M.S. wrote the paper.

Corresponding author

Correspondence to W. A. de Heer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 326 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sprinkle, M., Ruan, M., Hu, Y. et al. Scalable templated growth of graphene nanoribbons on SiC. Nature Nanotech 5, 727–731 (2010). https://doi.org/10.1038/nnano.2010.192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.192

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing