Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoscale mapping of ion diffusion in a lithium-ion battery cathode

Abstract

The movement of lithium ions into and out of electrodes is central to the operation of lithium-ion batteries. Although this process has been extensively studied at the device level, it remains insufficiently characterized at the nanoscale level of grain clusters, single grains and defects. Here, we probe the spatial variation of lithium-ion diffusion times in the battery-cathode material LiCoO2 at a resolution of 100 nm by using an atomic force microscope to both redistribute lithium ions and measure the resulting cathode deformation. The relationship between diffusion and single grains and grain boundaries is observed, revealing that the diffusion coefficient increases for certain grain orientations and single-grain boundaries. This knowledge provides feedback to improve understanding of the nanoscale mechanisms underpinning lithium-ion battery operation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterizing the LiCoO2 cathode layer and redistributing lithium ions with constant voltages (low-frequency pulses).
Figure 2: Mapping local lithium flow with high-frequency bias.
Figure 3: Local probing of lithium diffusion times by varying pulse frequency and amplitude.
Figure 4: Lithium intercalation map in LiCoO2.

Similar content being viewed by others

References

  1. Cohen, Y. S. & Aurbach, D. Surface films phenomena on vanadium-pentoxide cathodes for Li and Li-ion batteries: in situ AFM imaging. Electrochem. Commun. 6, 536–542 (2004).

    Article  CAS  Google Scholar 

  2. Doi, T. et al. Electrochemical AFM study of LiMn2O4 thin film electrodes exposed to elevated temperatures. J. Power Sources 180, 539–545 (2008).

    Article  CAS  Google Scholar 

  3. Beaulieu, L. Y., Cumyn, V. K., Eberman, K. W., Kraus, L. J. & Dahn, J. R. A system for performing simultaneous in situ atomic force microscopy/optical microscopy measurements on electrode materials for lithium-ion batteries. Rev. Sci. Instrum. 72, 3313–3319 (2001).

    Article  CAS  Google Scholar 

  4. Beaulieu, L. Y., Hatchard, T. D., Bonakdarpour, A., Fleischauer, M. D. & Dahn, J. R. Reaction of Li with alloy thin films studied by in situ AFM. J. Electrochem. Soc. 150, A1457–A1464 (2003).

    Article  CAS  Google Scholar 

  5. Lewis, R. B., Timmons, A., Mar, R. E. & Dahn, J. R. In situ AFM measurements of the expansion and contraction of amorphous Sn–Co–C films reacting with lithium. J. Electrochem. Soc. 154, A213–A216 (2007).

    Article  CAS  Google Scholar 

  6. Tian, Y., Timmons, A. & Dahn, J. R. In situ AFM measurements of the expansion of nanostructured Sn–Co–C films reacting with lithium. J. Electrochem. Soc. 156, A187–A191 (2009).

    Article  CAS  Google Scholar 

  7. Matsui, M., Dokko, K. & Kanamura, K. J. Dynamic behavior of surface film on LiCoO2 thin film electrode. J. Power Sources 177, 184–193 (2008).

    Article  CAS  Google Scholar 

  8. Clemencon, A., Appapillai, A. T., Kumar, S. & Shao-Horn, Y. Atomic force microscopy studies of surface and dimensional changes in LixCoO2 crystals during lithium de-intercalation. Electrochem. Acta 52, 4572–4580 (2007).

    Article  CAS  Google Scholar 

  9. Semenov, A. E., Borodina, I. N. & Garofalini, S. H. In situ deposition and ultrahigh vacuum STM/AFM study of V2O5/Li3PO4 interface in a rechargeable lithium-ion battery. J. Electrochem. Soc. 148, A1239–A1246 (2001).

    Article  CAS  Google Scholar 

  10. Kuriyama, K., Onoue, A., Yuasa, Y. & Kushida, K. Atomic force microscopy study of surface morphology change in spinel LiMn2O4: possibility of direct observation of Jahn–Teller instability. Surf. Sci. 601, 2256–2259 (2007).

    Article  CAS  Google Scholar 

  11. Huggins, R. A. Advanced Batteries: Materials Science Aspects (Springer, 2008).

    Google Scholar 

  12. García, R. E., Chiang, Y. M., Carter, W. C., Limthongkul, P. & Bishop, C. M. Microstructural modeling and design of rechargeable lithium-ion batteries. J. Electrochem. Soc. 152, A255–A263 (2005).

    Article  Google Scholar 

  13. Nazri, G. A. & Pistoia, G. (eds) Lithium Batteries: Science and Technology (Springer, 2009).

    Google Scholar 

  14. Amatucci, G. G., Tarascon, J. M. & Klein, L. C. CoO2, the end member of the LixCoO2 solid solution. J. Electrochem. Soc. 143, 1114–1123 (1996).

    Article  CAS  Google Scholar 

  15. Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. LixCoO2 (0 < x ≤ 1)—a new cathode material for batteries of high-energy density. Mater. Res. Bull. 15, 783–789 (1980).

    Article  CAS  Google Scholar 

  16. Hart, F. X. & Bates, J. B. Lattice model calculation of the strain energy density and other properties of crystalline LiCoO2 . J. Appl. Phys. 83, 7560–7566 (1998).

    Article  CAS  Google Scholar 

  17. Bouwman, P. J., Boukamp, B. A., Bouwmeester, H. J. M., Wondergem, H. J. & Notten, P. H. L. Structural analysis of submicrometer LiCoO2 films. J. Electrochem. Soc. 148, A311–A317 (2001).

    Article  CAS  Google Scholar 

  18. Gruverman, A. & Kholkin, A. Nanoscale ferroelectrics: processing, characterization and future trends. Rep. Prog. Phys. 69, 2443–2474 (2006).

    Article  CAS  Google Scholar 

  19. Morozovska, A. N., Eliseev, E. A. & Kalinin, S. V. Electromechanical probing of ionic currents in energy storage materials. Appl. Phys. Lett. 96, 222906 (2010).

    Article  Google Scholar 

  20. Jesse, S., Kalinin, S. V., Proksch, R., Baddorf, A. P. & Rodriguez, B. J. The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology 18, 435503 (2007).

    Article  Google Scholar 

  21. Zienkiewicz, O. C., Taylor, R. L. & Zhu. J. Z. The Finite Element Method Vol. 1 (McGraw-Hill, 2005).

    Google Scholar 

Download references

Acknowledgements

Research was sponsored as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number ERKCC61 (N.B., L.A., N.D., S.V.K.) and part of the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy in the projects CNMS2010-098 and CNMS2010-099 (N.B., S.J., I.N.I.). N.B. also acknowledges the Alexander von Humboldt foundation. R.E.G. and D.W.C. are grateful for the support provided by NSF grant CMMI 0856491.

Author information

Authors and Affiliations

Authors

Contributions

Y.K., L.A. and N.D. prepared the thin-film devices and N.B. conducted the experiments. S.J. developed the spectroscopic measurement technique and analysis tools. The semi-analytical calculations were provided by A.N.M. and E.E. and the object oriented finite element analysis calculations were carried out by D.W.C. and R.E.G. N.B. and S.V.K. wrote the article. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to N. Balke or S. V. Kalinin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1232 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balke, N., Jesse, S., Morozovska, A. et al. Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nature Nanotech 5, 749–754 (2010). https://doi.org/10.1038/nnano.2010.174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing