Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rationally designed logic integration of regulatory signals in mammalian cells

Abstract

Molecular-level information processing1,2 is essential for ‘smart’ in vivo nanosystems. Natural molecular computing, such as the regulation of messenger RNA (mRNA) synthesis by special proteins called transcription factors3,4, has inspired engineered systems5,6,7,8,9,10,11,12,13,14,15 that can control the levels of mRNA with certain combinations of transcription factors. Here, we show an alternative approach to achieving general-purpose control of mRNA and protein levels by logic integration of transcription factor input signals in mammalian cells. The transcription factors regulate synthetic genes coding for small regulatory RNAs (called microRNAs), which, in turn, control the mRNA of interest (the output) via an RNA interference pathway. The simplicity of these modular interactions makes it possible, in theory, to implement any arbitrary logic relation between the transcription factors and the output16. We construct, test and optimize increasingly complex circuits with up to three transcription factor inputs, establishing a platform for in vivo molecular computing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design elements of the synthetic circuits.
Figure 2: Experimental implementation of two-input regulatory programs.
Figure 3: Experimental implementation of a three-input regulatory program.

Similar content being viewed by others

References

  1. Shapiro, E. & Benenson, Y. Bringing DNA computers to life. Sci. Am. 294, 44–51 (2006).

    Article  CAS  Google Scholar 

  2. Jungmann, R., Renner, S. & Simmel, F. C. From DNA nanotechnology to synthetic biology. HFSP Journal 2, 99–109 (2008).

    Article  CAS  Google Scholar 

  3. Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genet. 31, 64–68 (2002).

    Article  CAS  Google Scholar 

  4. Lee, T. I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002).

    Article  CAS  Google Scholar 

  5. Weiss, R., Homsy, G. E. & Knight, T. F. in Evolution as Computation: DIMACS Workshop (eds Landweber, L. F. & Winfree, E.) 275–295 (Springer, 1999).

    Google Scholar 

  6. Guet, C. C., Elowitz, M. B., Hsing, W. H. & Leibler, S. Combinatorial synthesis of genetic networks. Science 296, 1466–1470 (2002).

    Article  CAS  Google Scholar 

  7. Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005).

    Article  CAS  Google Scholar 

  8. Anderson, J. C., Voigt, C. A. & Arkin, A. P. Environmental signal integration by a modular AND gate. Mol. Syst. Biol. 3, 133 (2007).

    Article  Google Scholar 

  9. Bronson, J. E., Mazur, W. W. & Cornish, V. W. Transcription factor logic using chemical complementation. Mol. Biosystems 4, 56–58 (2008).

    Article  CAS  Google Scholar 

  10. Canton, B., Labno, A. & Endy, D. Refinement and standardization of synthetic biological parts and devices. Nature Biotechnol. 26, 787–793 (2008).

    Article  CAS  Google Scholar 

  11. Sayut, D. J., Niu, Y. & Sun, L. H. Construction and enhancement of a minimal genetic AND logic gate. Appl. Environ. Microbiol. 75, 637–642 (2009).

    Article  CAS  Google Scholar 

  12. Ellis, T., Wang, X. & Collins, J. J. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nature Biotechnol. 27, 465–471 (2009).

    Article  CAS  Google Scholar 

  13. Kramer, B. P., Fischer, C. & Fussenegger, M. BioLogic gates enable logical transcription control in mammalian cells. Biotechnol. Bioeng. 87, 478–484 (2004).

    Article  CAS  Google Scholar 

  14. Mayo, A. E., Setty, Y., Shavit, S., Zaslaver, A. & Alon, U. Plasticity of the cis-regulatory input function of a gene. Plos Biol. 4, 555–561 (2006).

    Article  CAS  Google Scholar 

  15. Cox, R. S., Surette, M. G. & Elowitz, M. B. Programming gene expression with combinatorial promoters. Mol. Syst. Biol. 3, 145 (2007).

    Google Scholar 

  16. Rinaudo, K. et al. A universal RNAi-based logic evaluator that operates in mammalian cells. Nature Biotechnol. 25, 795–801 (2007).

    Article  CAS  Google Scholar 

  17. Fukuda, Y., Kawasaki, H. & Taira, K. Construction of microRNA-containing vectors for expression in mammalian cells. Meth. Mol. Biol. 338, 167–173 (2006).

    CAS  Google Scholar 

  18. Buchler, N. E., Gerland, U. & Hwa, T. On schemes of combinatorial transcription logic. Proc. Natl Acad. Sci. USA 100, 5136–5141 (2003).

    Article  CAS  Google Scholar 

  19. Schwake, G. et al. Predictive modeling of non-viral gene transfer. Biotech. Bioeng. 105, 805–813 (2010).

    CAS  Google Scholar 

  20. Marguet, P., Balagadde, F., Tan, C. M. & You, L. C. Biology by design: reduction and synthesis of cellular components and behaviour. J. Royal Soc. Interface 4, 607–623 (2007).

    Article  CAS  Google Scholar 

  21. An, W. L. & Chin, J. W. Synthesis of orthogonal transcription–translation networks. Proc. Natl Acad. Sci. USA 106, 8477–8482 (2009).

    Article  CAS  Google Scholar 

  22. Deans, T. L., Cantor, C. R. & Collins, J. J. A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells. Cell 130, 363–372 (2007).

    Article  CAS  Google Scholar 

  23. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    Article  CAS  Google Scholar 

  24. Lu, T. K., Khalil, A. S. & Collins, J. J. Next-generation synthetic gene networks. Nature Biotechnol. 27, 1139–1150 (2009).

    Article  CAS  Google Scholar 

  25. Xie, Z., Liu, S. J., Bleris, L. & Benenson, Y. Logic integration of mRNA signals by an RNAi-based molecular computer. Nucleic Acids Res. 38, 2692–2701 (2010).

    Article  CAS  Google Scholar 

  26. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biol. 9, 654–659 (2007).

    Article  CAS  Google Scholar 

  27. Gullotti, E. & Yeo, Y. Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol. Pharmaceutics 6, 1041–1051 (2009).

    Article  CAS  Google Scholar 

  28. Broz, P. et al. Toward intelligent nanosize bioreactors: a pH-switchable, channel-equipped, functional polymer nanocontainer. Nano Lett. 6, 2349–2353 (2006).

    Article  CAS  Google Scholar 

  29. Lu, Q. Seamless cloning and gene fusion. Trends Biotechnol. 23, 199–207 (2005).

    Article  CAS  Google Scholar 

  30. Stegmeier, F., Hu, G., Rickles, R. J., Hannon, G. J. & Elledge, S. J. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl Acad. Sci. USA 102, 13212–13217 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank anonymous reviewers for thoughtful comments. M.L. is a recipient of Deutsche Forschungs Gemeinschaft scholarship. The research was funded by the Bauer Fellows program and by the NIGMS grant GM068763 for National Centres of Systems Biology. M.L. acknowledges her father R. Leisner, who passed away as this manuscript was prepared for submission: ‘One learns most from those one loves’ (Goethe).

Author information

Authors and Affiliations

Authors

Contributions

Y.B. designed the research and supervised the project. M.L., L.B., J.L., Z.X. and Y.B. performed the research. M.L., Y.B., J.L. and L.B. wrote the manuscript.

Corresponding author

Correspondence to Yaakov Benenson.

Ethics declarations

Competing interests

The authors have an application pending for a US patent.

Supplementary information

Supplementary information

Supplementary information (PDF 3677 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leisner, M., Bleris, L., Lohmueller, J. et al. Rationally designed logic integration of regulatory signals in mammalian cells. Nature Nanotech 5, 666–670 (2010). https://doi.org/10.1038/nnano.2010.135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.135

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research