Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient electronic coupling and improved stability with dithiocarbamate-based molecular junctions

Abstract

Molecular electronic devices require stable and highly conductive contacts between the metal electrodes and molecules. Thiols and amines are widely used to attach molecules to metals, but they form poor electrical contacts and lack the robustness required for device applications. Here, we demonstrate that dithiocarbamates provide superior electrical contact and thermal stability when compared to thiols on metals. Ultraviolet photoelectron spectroscopy and density functional theory show the presence of electronic states at 0.6 eV below the Fermi level of Au, which effectively reduce the charge injection barrier across the metal−molecule interface. Charge transport measurements across oligophenylene monolayers reveal that the conductance of terphenyl–dithiocarbamate junctions is two orders of magnitude higher than that of terphenyl–thiolate junctions. The stability and low contact resistance of dithiocarbamate-based molecular junctions represent a significant step towards the development of robust, organic-based electronic circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of dithiocarbamate and thiol derivatives and spectroscopic data.
Figure 2: Transport measurements in TPDTC and TPT junctions.
Figure 3: Comparison of MBDTC and BM monolayers on Au(111).
Figure 4: DOS for different monolayers on Au(111).

Similar content being viewed by others

References

  1. Mann, B. & Kuhn, H. Tunneling through fatty acid salt monolayers. J. Appl. Phys. 42, 4398–4405 (1971).

    Article  CAS  Google Scholar 

  2. Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    Article  CAS  Google Scholar 

  3. Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

    Article  CAS  Google Scholar 

  4. Carroll, R. L. & Gorman, C. B. The genesis of molecular electronics. Angew. Chem. Int. Ed. 41, 4379–4400 (2002).

    Article  Google Scholar 

  5. Akkerman, H. B. & de Boer, B. Electrical conduction through single molecules and self-assembled monolayers. J. Phys. Condens. Matter 20, 013001 (2008).

    Article  Google Scholar 

  6. Tao, N. J. Electron transport in molecular junctions. Nature Nanotech. 1, 173–181 (2006).

    Article  CAS  Google Scholar 

  7. Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).

    Article  CAS  Google Scholar 

  8. Nitzan, A. & Ratner, M. A. Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003).

    Article  CAS  Google Scholar 

  9. Moth-Poulsen, K. & Bjornholm, T. Molecular electronics with single molecules in solid-state devices. Nature Nanotech. 4, 551–556 (2009).

    Article  CAS  Google Scholar 

  10. International Technology Roadmap for Semiconductors (Semiconductor Industry Association, 2009). Available at http://www.itrs.net/Links/2009ITRS/Home2009.htm

  11. Nuzzo, R. G. & Allara, D. L. Adsorption of bifunctional organic disulphides on gold surfaces. J. Am. Chem. Soc. 105, 4481–4483 (1983).

    Article  CAS  Google Scholar 

  12. Ulman, A. An Introducton to Ultrathin Organic Films (Academic Press, 1991).

  13. Schreiber, F. Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 65, 151–256 (2000).

    Article  CAS  Google Scholar 

  14. Xue, Y., Datta, S. & Ratner, M. A. Charge transfer and ‘band lineup’ in molecular electronic devices: a chemical and numerical interpretation. J. Chem. Phys. 115, 4292–4299 (2001).

    Article  CAS  Google Scholar 

  15. Ishida, T. et al. High resolution X-ray photoelectron spectroscopy measurements of octadecanethiol self-assembled monolayers on Au(111). Langmuir 14, 2092–2096 (1998).

    Article  CAS  Google Scholar 

  16. Sellers, H., Ulman, A., Shnidman, Y. & Eilers, J. E. Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers. J. Am. Chem. Soc. 115, 9389–9401 (1993).

    Article  CAS  Google Scholar 

  17. Kornilovitch, P. E. & Bratkovsky, A. M. Orientational dependence of current through molecular films. Phys. Rev. B 64, 195413 (2001).

    Article  Google Scholar 

  18. Donhauser, Z. J. et al. Conductance switching in single molecules through conformational changes. Science 292, 2303–2307 (2001).

    Article  CAS  Google Scholar 

  19. Ramachandran, G. K. et al. A bond-fluctuation mechanism for stochastic switching in wired molecules. Science 300, 1413–1416 (2003).

    Article  CAS  Google Scholar 

  20. Schreiber, F. et al. Adsorption mechanisms, structures and growth regimes of an archetypal self-assembling system: decanethiol on Au(111). Phys. Rev. B 57, 12476–12481 (1998).

    Article  CAS  Google Scholar 

  21. Coucouvanis, D. The chemistry of the dithioacid and 1,1-dithiolate complexes. Prog. Inorg. Chem. 11, 233–371 (1970).

    CAS  Google Scholar 

  22. Thorn, G. D. & Ludwig, R. A. The Dithiocarbamates and Related Compounds (Elsevier, 1962).

  23. Wessels, J. M. et al. Optical and electrical properties of three-dimensional interlinked gold nanoparticle assemblies. J. Am. Chem. Soc. 126, 3349–3356 (2004).

    Article  CAS  Google Scholar 

  24. Zhao, Y., Pérez-Segarra, W., Shi, Q. & Wei, A. Dithiocarbamate assembly on gold. J. Am. Chem. Soc. 127, 7328–7329 (2005).

    Article  CAS  Google Scholar 

  25. Morf, P. et al. Dithiocarbamates: functional and versatile linkers for the formation of self-assembled monolayers. Langmuir 22, 658–663 (2006).

    Article  CAS  Google Scholar 

  26. Li, Z. & Kosov, D. S. Dithiocarbamate anchoring in molecular wire junctions: a first principles study. J. Phys. Chem. B 110, 9893–9898 (2006).

    Article  CAS  Google Scholar 

  27. von Wrochem, F., Scholz, F., Yasuda, A. & Wessels, J. M. Probing structure and molecular conductance in highly ordered benzyl mercaptan monolayers. J. Phys. Chem. C 113, 12395–12401 (2009).

    Article  CAS  Google Scholar 

  28. Azzam, W., Bashir, A., Terfort, A., Strunskus, T. & Woll, C. Combined STM and FTIR characterization of terphenylalkanethiol monolayers on Au(111): effect of alkyl chain length and deposition temperature. Langmuir 22, 3647–3655 (2006).

    Article  CAS  Google Scholar 

  29. Laibinis, P. E. et al. Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, Cu, Ag, Au. J. Am. Chem. Soc. 113, 7152–7167 (1991).

    Article  CAS  Google Scholar 

  30. Naumann, R. et al. Tethered lipid bilayers on ultraflat gold surfaces. Langmuir 19, 5435–5443 (2003).

    Article  CAS  Google Scholar 

  31. Holmlin, R. E. et al. Electron transport through thin organic films in metal−insulator−metal junctions based on self-assembled monolayers. J. Am. Chem. Soc. 123, 5075–5085 (2001).

    Article  CAS  Google Scholar 

  32. Weiss, E. A. et al. Influence of defects on the electrical characteristics of mercury-drop junctions: self-assembled monolayers of n-alkanethiolates on rough and smooth silver. J. Am. Chem. Soc. 129, 4336–4349 (2007).

    Article  CAS  Google Scholar 

  33. Beebe, J. M., Kim, B., Frisbie, C. D. & Kushmerick, J. G. Measuring relative barrier heights in molecular electronic junctions with transition voltage spectroscopy. ACS Nano 2, 827–832 (2008).

    Article  CAS  Google Scholar 

  34. Duwez, A.-S. et al. Surface molecular structure of self-assembled alkanethiols evidenced by UPS and photoemission with synchrotron radiation. J. Phys. Chem. B 101, 884–890 (1997).

    Article  CAS  Google Scholar 

  35. Gokhale, S. et al. Electronic structure of benzene adsorbed on single-domain Si(001)–(2x1): a combined experimental and theoretical study. J. Chem. Phys. 108, 5554–5564 (1998).

    Article  CAS  Google Scholar 

  36. Campbell, I. H. et al. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. Phys. Rev. B 54, 14321–14324 (1996).

    Article  Google Scholar 

  37. Alloway, D. M. et al. Interface dipoles arising from self-assembled monolayers on gold: UV-photoemission studies of alkanethiols and partially fluorinated alkanethiols. J. Phys. Chem. B 107, 11690–11699 (2003).

    Article  CAS  Google Scholar 

  38. Patrone, L. et al. Evidence of the key role of metal−molecule bonding in metal−molecule−metal transport experiments. Phys. Rev. Lett. 91, 096802 (2003).

    Article  CAS  Google Scholar 

  39. Di Felice, R., Selloni, A. & Molinari, E. DFT study of cysteine adsorption on Au(111). J. Phys. Chem. B 107, 1151–1156 (2003).

    Article  CAS  Google Scholar 

  40. Monachesi, P., Chiodo, L. & Del Sole, R. Ab initio characterization of surface states at the S/Cu(100) interface. Phys. Rev. B 69, 165404 (2004).

    Article  Google Scholar 

  41. Di Ventra, M., Pantelides, S. T. & Lang, N. D. First-principles calculation of transport properties of a molecular device. Phys. Rev. Lett. 84, 979–982 (2000).

    Article  CAS  Google Scholar 

  42. Mujica, V. & Ratner, M. A. Current−voltage characteristics of tunneling molecular junctions for off-resonance injection. Chem. Phys. 264, 365–370 (2001).

    Article  CAS  Google Scholar 

  43. Grave, C. et al. Charge transport through oligoarylene self-assembled monolayers: interplay of molecular organization, metal−molecule interactions and electronic structure. Adv. Func. Mater. 17, 3816–3828 (2007).

    Article  CAS  Google Scholar 

  44. Redhead, P. A. Thermal desorption of gases. Vacuum 12, 203–211 (1962).

    Article  CAS  Google Scholar 

  45. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).

    Article  CAS  Google Scholar 

  46. Hammer, B., Hansen, L. B. & Norskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article  Google Scholar 

  47. Segall, M. D. et al. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matt. 14, 2717–2744 (2002).

    Article  CAS  Google Scholar 

  48. Agron, P. A. & Carlson, T. A. Angular resolved UPS and XPS spectra of benzenethiol adsorbed on Cu(111) at 300 °K. J. Vac. Sci. Technol. 20, 815–817 (1982).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Joseph, W.E. Ford, C. Schönenberger, M. Rampi, A. Baratoff, P. Morf and T. Jung for helpful discussions. They also thank C. Menke from Accelrys for support regarding molecular modelling.

Author information

Authors and Affiliations

Authors

Contributions

F.v.W. and J.M.W. designed the experiments and coordinated the project. D.G. synthesized the oligophenylenes. H.-G.N. supported the synthesis procedures. F.S. and F.v.W. performed the experiments and analysed the data. F.v.W. carried out the simulations and wrote the paper. G.N. is the laboratory manager.

Corresponding authors

Correspondence to Florian von Wrochem or Jurina M. Wessels.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1234 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Wrochem, F., Gao, D., Scholz, F. et al. Efficient electronic coupling and improved stability with dithiocarbamate-based molecular junctions. Nature Nanotech 5, 618–624 (2010). https://doi.org/10.1038/nnano.2010.119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing