Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrafast permeation of water through protein-based membranes

Abstract

Pressure-driven filtration by porous membranes is widely used in the production of drinking water from ground and surface water1,2,3. Permeation theory predicts that filtration rate is proportional to the pressure difference across the filtration membrane and inversely proportional to the thickness of the membrane4. However, these membranes need to be able to withstand high water fluxes and pressures, which means that the active separation layers in commercial filtration systems typically have a thickness of a few tens to several hundreds of nanometres5. Filtration performance might be improved by the use of ultrathin porous silicon membranes6 or carbon nanotubes immobilized in silicon nitride7 or polymer films8,9, but these structures are difficult to fabricate. Here, we report a new type of filtration membrane made of crosslinked proteins that are mechanically robust and contain channels with diameters of less than 2.2 nm. We find that a 60-nm-thick membrane can concentrate aqueous dyes from fluxes up to 9,000 l h−1 m−2 bar−1, which is 1,000 times higher than the fluxes that can be withstood by commercial filtration membranes with similar rejection properties1,10,11. Based on these results and molecular dynamics simulations, we propose that protein-surrounded channels with effective lengths of less than 5.8 nm can separate dye molecules while allowing the ultrafast permeation of water at applied pressures of less than 1 bar.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Filtration of protoporphyrin by protein-based membrane.
Figure 2: Rejection of protoporphyrin and thickness-dependent water permeability.
Figure 3: Water permeation through protein-surrounded channels.

Similar content being viewed by others

References

  1. Vankelecom, I. F. J., De Smet, K., Gevers, L. E. M. & Jacobs, P. A. Nanofiltration membrane materials and preparation, in Nanofiltration: Principles and Applications (eds Schäfer, A. I., Fane, A. G. & Waite, T. D.) ch. 3 (Elsevier, 2005).

    Google Scholar 

  2. Petersen, R. J. Composite reverse osmosis and nanofiltration membranes. J. Membrane Sci. 83, 81–150 (1993).

    Article  CAS  Google Scholar 

  3. Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    Article  CAS  Google Scholar 

  4. Baker, R. W. Membrane Technology and Applications 2nd edn (Wiley, 2004).

    Book  Google Scholar 

  5. Vandezande, P., Gevers, L. E. M. & Vankelecom, I. F. J. Solvent resistant nanofiltration: separating on a molecular level. Chem. Soc. Rev. 37, 365–405 (2008).

    Article  CAS  Google Scholar 

  6. Striemer, C. C., Gaborski, T. R., McGrath, J. L. & Fauchet, P. M. Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature 445, 749–753 (2007).

    Article  CAS  Google Scholar 

  7. Holt, J. K., Noy, A., Huser, T., Eaglesham, D. & Bakajin, O. Fabrication of a carbon nanotube-embedded silicon nitride membrane for studies of nanometer-scale mass transport. Nano Lett. 4, 2245–2250 (2004).

    Article  CAS  Google Scholar 

  8. Hinds, B. J. et al. Aligned multiwalled carbon nanotube membranes. Science 303, 62–65 (2004).

    Article  CAS  Google Scholar 

  9. Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article  CAS  Google Scholar 

  10. Lu, Y., Suzuki, T., Zhang, W., Moore, J. S. & Mariñas, B. J. Nanofiltration membranes based on rigid star amphiphiles. Chem. Mater. 19, 3194–3204 (2007).

    Article  CAS  Google Scholar 

  11. Braeken, L., Van der Bruggen, B. & Vandecasteele, C. Flux decline in nanofiltration due to adsorption of dissolved organic compounds: model prediction of time dependency. J. Phys. Chem. B 110, 2957–2962 (2006).

    Article  CAS  Google Scholar 

  12. Khulbe, K. C., Feng, C. Y. & Matsuura, T. Synthetic Polymeric Membranes: Characterization by Atomic Force Microscopy (Springer, 2008).

    Google Scholar 

  13. Peng, X., Jin, J., Ericsson, E. M. & Ichinose, I. General method for ultrathin free-standing films of nanofibrous composite materials. J. Am. Chem. Soc. 129, 8625–8633 (2007).

    Article  CAS  Google Scholar 

  14. Ichinose, I., Kurashima, K. & Kunitake, T. Spontaneous formation of cadmium hydroxide nanostrands in water. J. Am. Chem. Soc. 126, 7162–7163 (2004).

    Article  CAS  Google Scholar 

  15. Luo, Y. et al. Formation of positively charged copper hydroxide nanostrands and their structural characterization. Chem. Mater. 18, 1795–1802 (2006).

    Article  CAS  Google Scholar 

  16. Peng, X., Jin, J., Kobayashi, N., Schmitt, W. & Ichinose, I. Time-dependent growth of zinc hydroxide nanostrands and their crystal structure. Chem. Commun. 1904–1906 (2008).

  17. Peng, X., Jin, J. & Ichinose, I. Mesoporous separation membranes of polymer-coated copper hydroxide nanostrands. Adv. Funct. Mater. 17, 1849–1855 (2007).

    Article  CAS  Google Scholar 

  18. Connors, K. A. The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1357 (1997).

    Article  CAS  Google Scholar 

  19. Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998).

    Article  CAS  Google Scholar 

  20. Conway, B. E. Ionic Hydration in Chemistry and Biophysics (Elsevier, 1981).

    Google Scholar 

  21. Verweij, H., Schillo, M. C. & Li, J. Fast mass transport through carbon nanotube membranes. Small 3, 1996–2004 (2007).

    Article  CAS  Google Scholar 

  22. Liu, Y., Wang, Q., Wu, T. & Zhang, L. Fluid structure and transport properties of water inside carbon nanotubes. J. Phys. Chem. 123, 234701 (2005).

    Article  Google Scholar 

  23. Rodriguez, M. S., Dargemont, C. & Stutz, F. Nuclear export of RNA. Biol. Cell. 96, 639–655 (2004).

    Article  CAS  Google Scholar 

  24. Latulippe, D. R., Ager, K. & Zydney, A. L. Flux-dependent transmission of supercoiled plasmid DNA through ultrafiltration membranes. J. Membrane Sci. 294, 169–177 (2007).

    Article  CAS  Google Scholar 

  25. Sára, M. & Sleytr, U. B. Production and characteristics of ultrafiltration membranes with uniform pores from two-dimensional arrays of proteins. J. Membrane Sci. 33, 27–49 (1987).

    Article  Google Scholar 

  26. Mahoney, M. W. & Jorgensen, W. L. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J. Chem. Phys. 112, 8910–8922 (2000).

    Article  CAS  Google Scholar 

  27. Case, D. A. et al. AMBER 9 (Univ. California, 2006).

    Google Scholar 

  28. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An N·log (N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Nakao (Tokyo University) for many helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

X.P. was responsible for the preparation and characterization of protein-based membranes, evaluation of filtration properties of dyes and other water-soluble compounds, and analysis of water permeability. Y.N. and T.O. were responsible for molecular dynamics simulations. J.J. contributed to the crosslinking of proteins. X.P. and I.I. were responsible for experimental design and manuscript preparation. I.I. was responsible for project planning.

Corresponding author

Correspondence to Izumi Ichinose.

Supplementary information

Supplementary information

Supplementary information (PDF 964 kb)

Supplementary information

Supplementary Movie (AVI 5158 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, X., Jin, J., Nakamura, Y. et al. Ultrafast permeation of water through protein-based membranes. Nature Nanotech 4, 353–357 (2009). https://doi.org/10.1038/nnano.2009.90

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.90

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing