Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-dimensional imaging of short-range chemical forces with picometre resolution

Abstract

Chemical forces on surfaces have a central role in numerous scientific and technological fields, including catalysis1,2, thin film growth3 and tribology4,5. Many applications require knowledge of the strength of these forces as a function of position in three dimensions, but until now such information has only been available from theory2. Here, we demonstrate an approach based on atomic force microscopy that can obtain this data, and we use this approach to image the three-dimensional surface force field of graphite. We show force maps with picometre and piconewton resolution that allow a detailed characterization of the interaction between the surface and the tip of the microscope in three dimensions. In these maps, the positions of all atoms are identified, and differences between atoms at inequivalent sites are quantified. The results suggest that the excellent lubrication properties of graphite may be due to a significant localization of the lateral forces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the data acquisition and analysis scheme.
Figure 2: The structure and three-dimensional energy field of stacked graphene sheets.
Figure 3: Different representations of force and dissipation data.
Figure 4: Atomic-scale lateral forces.

Similar content being viewed by others

References

  1. Barker, J. A. & Auerbach, D. J. Gas–surface interactions and dynamics; thermal energy atomic and molecular beam studies. Surf. Sci. Rep. 4, 1–99 (1985).

    Article  CAS  Google Scholar 

  2. Christensen, C. H. & Nørskov, J. K. A molecular view of heterogeneous catalysis. J. Chem. Phys. 128, 182503 (2008).

    Article  Google Scholar 

  3. Fu, Q. & Wagner, T. Interaction of nanostructured metal overlayers with oxide surfaces. Surf. Sci. Rep. 62, 431–498 (2007).

    Article  CAS  Google Scholar 

  4. Hölscher, H., Schirmeisen, A. & Schwarz, U. D. Principles of atomic friction: from sticking atoms to superlubric sliding. Phil. Trans. R. Soc. A 366, 1383–1404 (2008).

    Article  Google Scholar 

  5. Mo, Y., Turner, K. T. & Szlufarska, I. Friction laws at the nanoscale. Nature 457, 1116–1119 (2009).

    Article  CAS  Google Scholar 

  6. Mate, C. M., McClelland, G. M., Erlandsson, R. & Chiang, S. Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987).

    Article  CAS  Google Scholar 

  7. Schwarz, U. D., Zwörner, O., Köster, P. & Wiesendanger, R. Quantitative analysis of the frictional properties of solid materials at low load. I. Carbon compounds. Phys. Rev. B 56, 6987–6996 (1997).

    Article  CAS  Google Scholar 

  8. Dirnwiebel, M. et al. Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004).

    Article  Google Scholar 

  9. Avouris, P., Chen, Z. & Perebeinos, V. Carbon-based electronics. Nature Nanotech. 2, 605–615 (2007).

    Article  CAS  Google Scholar 

  10. Meyer, J. C., Girit, C. O., Crommie, M. F. & Zettl, A. Imaging and dynamics of light atoms and molecules on graphene. Nature 454, 319–322 (2008).

    Article  CAS  Google Scholar 

  11. Gómez-Navarro, C. et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7, 3499–3503 (2007).

    Article  Google Scholar 

  12. Seo, Y. & Jhe, W. Atomic force microscopy and spectroscopy. Rep. Prog. Phys. 71, 016101 (2008).

    Article  Google Scholar 

  13. Giessibl, F. J. Atomic resolution of the silicon (111)–(7 × 7) surface by atomic force microscopy. Science 287, 68–71 (1995).

    Article  Google Scholar 

  14. Schwarz, A., Hölscher, H., Langkat, S. M. & Wiesendanger, R. Three-dimensional force field spectroscopy. AIP Conf. Proc. 696, 68–78 (2003).

    Article  CAS  Google Scholar 

  15. Ternes, M., Lutz, C. P., Hirjibehedin, C. F., Giessibl, F. J. & Heinrich, A. J. The force needed to move an atom. Science 319, 1066–1069 (2008).

    Article  CAS  Google Scholar 

  16. Ruschmeier, K., Schirmeisen, A. & Hoffmann, R. Atomic-scale force-vector fields. Phys. Rev. Lett. 101, 156102 (2008).

    Article  Google Scholar 

  17. Sugimoto, Y., Namikawa, T., Miki, K., Abe, M. & Morita, S. Vertical and lateral force mapping on the Si(111)–(7 × 7) surface by dynamic force microscopy. Phys. Rev. B 77, 195424 (2008).

    Article  Google Scholar 

  18. Hölscher, H., Allers, W., Schwarz, U. D., Schwarz, A. & Wiesendanger, R. Determination of tip–sample interaction potentials by dynamic force spectroscopy. Phys. Rev. Lett. 83, 4780–4783 (1999).

    Article  Google Scholar 

  19. Sader, J. E. & Jarvis, S. P. Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl. Phys. Lett. 84, 1801–1803 (2004).

    Article  CAS  Google Scholar 

  20. Hölscher, H., Schwarz, A., Allers, W., Schwarz, U. D. & Wiesendanger, R. Quantitative analysis of dynamic-force-spectroscopy data on graphite(0001) in the contact and noncontact regime. Phys. Rev. B 61, 12678–12681 (2000).

    Article  Google Scholar 

  21. Lantz, M. A. et al. Quantitative measurement of short-range chemical bonding forces. Science 291, 2580–2583 (2001).

    Article  CAS  Google Scholar 

  22. Sugimoto, Y. et al. Chemical identification of individual surface atoms by atomic force microscopy. Nature 446, 64–67 (2007).

    Article  CAS  Google Scholar 

  23. Schrimeisen, A., Weiner, D. & Fuchs, H. Single-atom contact mechanics: from atomic scale energy barrier to mechanical relaxation hysteresis. Phys. Rev. Lett. 97, 136101 (2006).

    Article  Google Scholar 

  24. Heyde, M., Simon, G. H., Rust, H.-P. & Freund, H.-J. Probing adsorption sites on thin oxide films by dynamic force microscopy. Appl. Phys. Lett. 89, 263107 (2006).

    Article  Google Scholar 

  25. Abe, M. et al. Drift-compensated data acquisition performed at room temperature with frequency modulation atomic force microscopy. Appl. Phys. Lett. 90, 203103 (2007).

    Article  Google Scholar 

  26. Ashino, M. et al. Atomically resolved mechanical response of individual metallofullerene molecules confined inside carbon nanotubes. Nature Nanotech. 3, 337–341 (2008).

    Article  CAS  Google Scholar 

  27. Stolyarova, E. et al. High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc. Natl Acad. Sci. USA 104, 9209–9212 (2007).

    Article  CAS  Google Scholar 

  28. Albers, B. J. et al. Combined low-temperature scanning tunneling/atomic force microscope for atomic-resolution imaging and site-specific force spectroscopy. Rev. Sci. Instrum. 79, 033701 (2008).

    Article  Google Scholar 

  29. Hölscher, H. et al. Interpretation of ‘true atomic resolution’ images of graphite (0001) in noncontact atomic force microscopy. Phys. Rev. B 62, 6967–6970 (2000).

    Article  Google Scholar 

  30. Hembacher, S., Giessibl, F. J., Mannhart, J. & Quate, C. F. Revealing the hidden atom in graphite by low-temperature atomic force microscopy. Proc. Natl Acad. Sci. USA 100, 12539–12542 (2003).

    Article  CAS  Google Scholar 

  31. Hembacher, S., Giessibl, F. J., Mannhart, J. & Quate, C. F. Local spectroscopy and atomic imaging of tunneling current, forces and dissipation on graphite. Phys. Rev. Lett. 94, 056101 (2005).

    Article  CAS  Google Scholar 

  32. Ashino, M. et al. Interpretation of the atomic scale contrast obtained on graphite and single-walled carbon nanotubes in the dynamic mode of atomic force microscopy. Nanotechnology 16, S134–S137 (2005).

    Article  CAS  Google Scholar 

  33. Ashino, M., Schwarz, A., Behnke, T. & Wiesendanger, R. Atomic-resolution dynamic force microscopy and spectroscopy of a single-walled carbon nanotube: characterization of interatomic van der Waals forces. Phys. Rev. Lett. 93, 136101 (2004).

    Article  Google Scholar 

  34. Hölscher, H., Schwarz, U. D., Zwörner, O. & Wiesendanger, R. Consequences of the stick-slip movement for the scanning force microscopy imaging of graphite. Phys. Rev. B 57, 2477–2481 (1998).

    Article  Google Scholar 

  35. Sasaki, N., Kobayashi, K. & Tsukada, M. Atomic-scale friction image of graphite in atomic-force microscopy. Phys. Rev. B 54, 2138–2149 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Science Foundation (MRSEC DMR 0520495), the Department of Energy (DE-FG02-06ER15834) and the Petroleum Research Fund (42259-AC5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo D. Schwarz.

Supplementary information

Supplementary Information

Supplementary information S1 (PDF 804 kb)

Supplementary Information

Supplementary information S2 (MOV 2949 kb)

Supplementary Information

Supplementary information S3 (MOV 8227 kb)

Supplementary Information

Supplementary information S4 (MOV 1386 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albers, B., Schwendemann, T., Baykara, M. et al. Three-dimensional imaging of short-range chemical forces with picometre resolution. Nature Nanotech 4, 307–310 (2009). https://doi.org/10.1038/nnano.2009.57

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.57

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing