Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami

Abstract

The development of nanoscale electronic and photonic devices will require a combination of the high throughput of lithographic patterning and the high resolution and chemical precision afforded by self-assembly1,2,3,4. However, the incorporation of nanomaterials with dimensions of less than 10 nm into functional devices has been hindered by the disparity between their size and the 100 nm feature sizes that can be routinely generated by lithography. Biomolecules offer a bridge between the two size regimes, with sub-10 nm dimensions, synthetic flexibility and a capability for self-recognition. Here, we report the directed assembly of 5-nm gold particles into large-area, spatially ordered, two-dimensional arrays through the site-selective deposition of mesoscopic DNA origami5 onto lithographically patterned substrates6 and the precise binding of gold nanocrystals to each DNA structure. We show organization with registry both within an individual DNA template and between components on neighbouring DNA origami, expanding the generality of this method towards many types of patterns and sizes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Process for assembling two-dimensional nanoparticle arrays.
Figure 2: Binding of DNA origami to a surface.
Figure 3: Binding efficiencies of 5-nm gold nanoparticles to corners of A30-modified triangular DNA origami either in solution or adsorbed on oxide substrates.
Figure 4: Two-dimensional arrays of gold nanoparticles directed by lithographically confined DNA origami.
Figure 5: Geometrically packed arrays of multiple DNA origami conjugated with gold nanocrystals.

Similar content being viewed by others

References

  1. Alivisatos, A. P. et al. From molecules to materials: current trends and future directions. Adv. Mater. 10, 1297–1336 (1998).

    Article  Google Scholar 

  2. Crespo-Biel, O., Ravoo, B. J., Reinhoudt, D. N. & Huskens, J. Noncovalent nanoarchitectures on surfaces: from 2D to 3D nanostructures. J. Mater. Chem. 16, 3997–4021 (2006).

    Article  CAS  Google Scholar 

  3. Seeman, N. C. DNA in a material world. Nature 421, 427–431 (2003).

    Article  Google Scholar 

  4. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  CAS  Google Scholar 

  5. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  6. Kershner, R. J. et al. Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nature Nanotech. 4, 557–561 (2009).

    Article  CAS  Google Scholar 

  7. LaBean, T. H. et al. Construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000).

    Article  CAS  Google Scholar 

  8. Mao, C. D., Sun, W. Q. & Seeman, N. C. Assembly of Borromean rings from DNA. Nature 386, 137–138 (1997).

    Article  CAS  Google Scholar 

  9. Weizmann, Y., Braunschweig, A. B., Wilner, O. I., Cheglakov, Z. & Willner, I. A polycatenated DNA scaffold for the one-step assembly of hierarchical nanostructures. Proc. Natl Acad. Sci. USA 105, 5289–5294 (2008).

    Article  CAS  Google Scholar 

  10. Winfree, E., Liu, F. R., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    Article  CAS  Google Scholar 

  11. Yan, H., Park, S. H., Finkelstein, G., Reif, J. H. & LaBean, T. H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003).

    Article  CAS  Google Scholar 

  12. Goodman, R. P. et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661–1665 (2005).

    Article  CAS  Google Scholar 

  13. He, Y. et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198–201 (2008).

    Article  CAS  Google Scholar 

  14. Shih, W. M., Quispe, J. D. & Joyce, G. F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004).

    Article  CAS  Google Scholar 

  15. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  CAS  Google Scholar 

  16. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    Article  CAS  Google Scholar 

  17. Rinker, S., Ke, Y. G., Liu, Y., Chhabra, R. & Yan, H. Self-assembled DNA nanostructures for distance-dependent multivalent ligand–protein binding. Nature Nanotech. 3, 418–422 (2008).

    Article  CAS  Google Scholar 

  18. Pinto, Y. Y. et al. Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. Nano Lett. 5, 2399–2402 (2005).

    Article  CAS  Google Scholar 

  19. Zheng, J. W. et al. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 6, 1502–1504 (2006).

    Article  CAS  Google Scholar 

  20. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    Article  CAS  Google Scholar 

  21. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    Article  CAS  Google Scholar 

  22. Sharma, J. et al. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323, 112–116 (2009).

    Article  CAS  Google Scholar 

  23. Lin, C. X. et al. Functional DNA nanotube arrays: bottom-up meets top-down. Angew Chem. Int. Ed. 46, 6089–6092 (2007).

    Article  CAS  Google Scholar 

  24. Gerdon, A. E. et al. Controlled delivery of DNA origami on patterned surfaces. Small 5, 1942–1946 (2009).

    Article  CAS  Google Scholar 

  25. Hansma, H. G., Bezanilla, M., Zenhausern, F., Adrian, M. & Sinsheimer, R. L. Atomic force microscopy of DNA in aqueous-solutions. Nucleic Acids Res. 21, 505–512 (1993).

    Article  CAS  Google Scholar 

  26. Song, Y. H. et al. A novel strategy to construct a flat-lying DNA monolayer on a mica surface. J. Phys. Chem. B 110, 10792–10798 (2006).

    Article  CAS  Google Scholar 

  27. Le, J. D. et al. DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett. 4, 2343–2347 (2004).

    Article  CAS  Google Scholar 

  28. Choi, C. K., Margraves, C. H. & Kihm, K. D. Examination of near-wall hindered Brownian diffusion of nanoparticles: experimental comparison to theories by Brenner (1961) and Goldman et al. (1967). Phys. Fluids 19, 103305 (2007).

    Article  Google Scholar 

  29. Zanchet, D., Micheel, C. M., Parak, W. J., Gerion, D. & Alivisatos, A. P. Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nano Lett. 1, 32–35 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Center on Polymer Interfaces and Macromolecular Assemblies (award no. NSF DMR 0213618), the Office of Naval Research (award no. N00014-09-01-0250) and UCSD startup funds. The authors thank B. Davis for optical lithography, P.W.K. Rothemund for helpful discussions and comments on the manuscript, and S. Swanson, C. Rettner and M. Sanchez for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.M.H., C.M.M. and J.N.C. conceived and designed the experiments. A.M.H., C.M.M. and L.W.O. performed the experiments. L.D.B. contributed the lithographically patterned substrates. A.M.H. and J.N.C. analysed the data. A.M.H. and J.N.C. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jennifer N. Cha.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1985 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, A., Micheel, C., Bozano, L. et al. Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nature Nanotech 5, 121–126 (2010). https://doi.org/10.1038/nnano.2009.450

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.450

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing