Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice

Abstract

The near-infrared photoluminescence intrinsic to semiconducting single-walled carbon nanotubes is ideal for biological imaging owing to the low autofluorescence and deep tissue penetration in the near-infrared region beyond 1 µm. However, biocompatible single-walled carbon nanotubes with high quantum yield have been elusive. Here, we show that sonicating single-walled carbon nanotubes with sodium cholate, followed by surfactant exchange to form phospholipid–polyethylene glycol coated nanotubes, produces in vivo imaging agents that are both bright and biocompatible. The exchange procedure is better than directly sonicating the tubes with the phospholipid–polyethylene glycol, because it results in less damage to the nanotubes and improves the quantum yield. We show whole-animal in vivo imaging using an InGaAs camera in the 1–1.7 µm spectral range by detecting the intrinsic near-infrared photoluminescence of the ‘exchange’ single-walled carbon nanotubes at a low dose (17 mg l−1 injected dose). The deep tissue penetration and low autofluorescence background allowed high-resolution intravital microscopy imaging of tumour vessels beneath thick skin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of exchange- and direct-SWNTs.
Figure 2: Atomic force microscopy and Raman spectroscopy.
Figure 3: In vitro NIR photoluminescence targeted cell imaging.
Figure 4: In vivo NIR photoluminescence imaging of mice.
Figure 5: Intravital NIR photoluminescence imaging of tumour vessels.

Similar content being viewed by others

References

  1. Liu, Z., Tabakman, S., Welsher, K. & Dai, H. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2, 85–175 (2009).

    Article  CAS  Google Scholar 

  2. Dhar, S. et al. Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J. Am. Chem. Soc. 130, 11467–11476 (2008).

    Article  CAS  Google Scholar 

  3. Liu, Z., Winters, M., Holodniy, M. & Dai, H. J. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem. Int. Ed. 46, 2023–2027 (2007).

    Article  CAS  Google Scholar 

  4. Liu, Z. et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 68, 6652–6660 (2008).

    Article  CAS  Google Scholar 

  5. Liu, Z. et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotech. 2, 47–52 (2007).

    Article  CAS  Google Scholar 

  6. Liu, Z. et al. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl Acad. Sci. USA 105, 1410–1415 (2008).

    Article  CAS  Google Scholar 

  7. De La Zerda, A. et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nature Nanotech. 3, 557–562 (2008).

    Article  CAS  Google Scholar 

  8. Cherukuri, P., Bachilo, S. M., Litovsky, S. H. & Weisman, R. B. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126, 15638–15639 (2004).

    Article  CAS  Google Scholar 

  9. Cherukuri, P. et al. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc. Natl Acad. Sci. USA 103, 18882–18886 (2006).

    Article  CAS  Google Scholar 

  10. Leeuw, T. K. et al. Single-walled carbon nanotubes in the intact organism: near-IR imaging and biocompatibility studies in Drosophila. Nano Lett. 7, 2650–2654 (2007).

    Article  CAS  Google Scholar 

  11. Welsher, K., Liu, Z., Daranciang, D. & Dai, H. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett. 8, 586–590 (2008).

    Article  CAS  Google Scholar 

  12. Chen, Z. et al. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nature Biotechnol. 26, 1285–1292 (2008).

    Article  CAS  Google Scholar 

  13. O'Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Article  CAS  Google Scholar 

  14. Aubin, J. E. Autofluorescence of viable cultured mammalian cells. J. Histochem. Cytochem. 27, 36–43 (1979).

    Article  CAS  Google Scholar 

  15. Britton, C. Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation. Ann. NY Acad. Sci. 838, 29–45 (1998).

    Article  Google Scholar 

  16. Lim, Y. T. et al. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol. Imag. 2, 50–64 (2003).

    Article  CAS  Google Scholar 

  17. Kam, N. W. S., O'Connell, M., Wisdom, J. A. & Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl Acad. Sci. USA 102, 11600–11605 (2005).

    Article  CAS  Google Scholar 

  18. Wenseleers, W. et al. Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv. Funct. Mater. 14, 1105–1112 (2004).

    Article  CAS  Google Scholar 

  19. Hertel, T. et al. Spectroscopy of single- and double-wall carbon nanotubes in different environments. Nano Lett. 5, 511–514 (2005).

    Article  CAS  Google Scholar 

  20. Chiashi, S., Watanabe, S., Hanashima, T. & Homma, Y. Influence of gas adsorption on optical transition energies of single-walled carbon nanotubes. Nano Lett. 8, 3097–3101 (2008).

    Article  CAS  Google Scholar 

  21. Liu, Z., Sun, X., Nakayama-Ratchford, N. & Dai, H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1, 50–56 (2007).

    Article  Google Scholar 

  22. Heller, D. A. et al. Concomitant length and diameter separation of single-walled carbon nanotubes. J. Am. Chem. Soc. 126, 14567–14573 (2004).

    Article  CAS  Google Scholar 

  23. Cognet, L. et al. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316, 1465–1468 (2007).

    Article  CAS  Google Scholar 

  24. Georgi, C. et al. Photoinduced luminescence blinking and bleaching in individual single-walled carbon nanotubes. ChemPhysChem 9, 1460–1464 (2008).

    Article  CAS  Google Scholar 

  25. Saito, R., Dresselhaus, G. & Dresselhaus, M. S. Physical Properties of Carbon Nanotubes (Imperial College Press, 1998).

    Book  Google Scholar 

  26. Kedrin, D. et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nature Meth. 5, 1019–1021 (2008).

    Article  CAS  Google Scholar 

  27. Lehr, H. A. et al. Dorsal skinfold chamber technique for intravital microscopy in nude mice. Am. J. Pathol. 143, 1055–1062 (1993).

    CAS  Google Scholar 

  28. Jain, R. K., Munn, L. L. & Fukumura, D. Dissecting tumour pathophysiology using intravital microscopy. Nature Rev. Canc. 2, 266–276 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank X. Chen for the RGD peptide. This work was supported partially by CCNE-TR at Stanford University, NIH-NCI RO1 CA135109-02 and Ensysce.

Author information

Authors and Affiliations

Authors

Contributions

K.W., Z.L., S.S., J.R., D.D. and H.D. conceived and designed the experiments. K.W., Z.L., S.S., J.R. and Z.C. performed the experiments. K.W. analysed the data. K.W. and H.D. co-wrote the paper.

Corresponding author

Correspondence to Hongjie Dai.

Supplementary information

Supplementary information

Supplementary information (PDF 1360 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welsher, K., Liu, Z., Sherlock, S. et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nature Nanotech 4, 773–780 (2009). https://doi.org/10.1038/nnano.2009.294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.294

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing