Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrahigh-density phase-change data storage without the use of heating

Abstract

Non-volatile memories based on scanning probes offer very high data densities, but existing approaches require the probe to be heated, which increases the energy expenditure and complexity of fabrication1,2,3,4,5,6,7,8,9,10,11,12,13,14. Here, we demonstrate the writing, reading and erasure of an ultrahigh-density array of nanoscopic indentations without heating either the scanning probe tip or the substrate. An atomic force microscope tip causes microphase transitions of the polystyrene-block-poly(n-pentyl methacrylate) of a block copolymer to occur at room temperature by application of pressure alone. We demonstrate a data storage density of 1 Tb in−2, which is limited only by the size of the tip. This demonstration of a pressure-based phase-change memory at room temperature may expedite the development of next-generation ultrahigh-density data storage media.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the fabrication of a nanopatterned surface with an ultrahigh-density array of nanoscopic indentations and AFM height images and height profiles of the nanopatterns.
Figure 2: Nanopattern formation through the microphase transition of the lamellar microdomains to a disordered state in the block copolymer thin film.
Figure 3: Reading of the nanopatterns by a piezoelectric sensing method.
Figure 4: Repeated writing and bulk erasing processes and local erasing.

Similar content being viewed by others

References

  1. Hamann, H. F., O'Boyle, M., Martin, Y. C., Rooks, M. & Wickramasinghe, H. K. Ultrahigh-density phase-change storage and memory. Nature Mater. 5, 383–387 (2006).

    Article  CAS  Google Scholar 

  2. Wright, C. D., Armand, M. & Aziz, M. M. Terabit-per-square-inch data storage using phase-change media and scanning electrical nanoprobes. IEEE Trans. Nanotechnol. 5, 50–61 (2006).

    Article  Google Scholar 

  3. Gidon, S. et al. Electrical probe storage using joule heating in phase change media. Appl. Phys. Lett. 85, 6392–6294 (2004).

    Article  CAS  Google Scholar 

  4. Gotsmann, B., Duerig, U., Frommer, J. & Hawker, C. J. Exploiting chemical switching in a Diels–Alder polymer for nanoscale probe lithography and data storage. Adv. Funct. Mater. 16, 1499–1505 (2006).

    Article  CAS  Google Scholar 

  5. Binnig, G. et al. Ultrahigh-density atomic force microscopy data storage with erase capability. Appl. Phys. Lett. 74, 1329–1331 (1999).

    Article  CAS  Google Scholar 

  6. Vettiger, P. et al. The ‘Millipede’—more than one thousand tips for future AFM data storage. IBM J. Res. Dev. 44, 323–340 (2000).

    Article  CAS  Google Scholar 

  7. Vettiger, P. et al. The ‘Millipede’—nanotechnology entering data storage. IEEE Trans. Nanotechnol. 1, 39–55 (2002).

    Article  Google Scholar 

  8. Lantz, M. A. et al. Carbon nanotube tips for thermomechanical data storage. Appl. Phys. Lett. 83, 1266–1268 (2003).

    Article  CAS  Google Scholar 

  9. Pozidis, H. et al. Demonstration of thermomechanical recording at 641 Gbit in−2. IEEE Trans. Magn. 40, 2531–2536 (2004).

    Article  Google Scholar 

  10. Knoll, A. et al. Integrating nanotechnology into a working storage device. Microelectron. Eng. 83, 1692–1697 (2006).

    Article  CAS  Google Scholar 

  11. Wiesmann, D. et al. Ultra-high densities with thermo-mechanical probes and polymer media. Proceedings of the Innovative Mass Storage Technologies Workshop, Enschede, The Netherlands, 19–20 (2007).

  12. Pantazi, A. et al. Probe-based ultrahigh-density storage technology. IBM J. Res. Dev. 52, 493–511 (2008).

    Article  CAS  Google Scholar 

  13. Altebaeumer, T. et al. Nanoscale shape-memory function in highly cross-linked polymers. Nano Lett. 8, 4398–4403 (2008).

    Article  CAS  Google Scholar 

  14. Knoll, A. et al. Relaxation kinetics of nanoscale indents in a polymer glass. Phys. Rev. Lett. 102, 117801 (2009).

    Article  CAS  Google Scholar 

  15. Shaw, G. A., Trethewey, J. S., Johnson, A. D., Drugan, W. J. & Crone, W. C. Thermomechanical high-density data storage in a metallic material via the shape-memory effect. Adv. Mater. 17, 1123–1127 (2005).

    Article  CAS  Google Scholar 

  16. Pollard, M. et al. The effect of hydrostatic pressure on the lower critical ordering transition in diblock copolymer. Macromolecules 31, 6493–6498 (1998).

    Article  CAS  Google Scholar 

  17. Ruzette, A.-V. G. et al. Phase behavior of diblock copolymers between styrene and n-alkyl methacrylate. Macromolecules 31, 8509–8516 (1998).

    Article  CAS  Google Scholar 

  18. Ruzette, A. V. G., Pollard, A. M., Russell, T. P. & Hammouda, B. Pressure effects on the phase behavior of styrene/n-alkyl methacrylate block copolymers. Macromolecules 36, 3351–3356 (2003).

    Article  CAS  Google Scholar 

  19. Gonzalez-Leon, J. A., Acar, M. H., Ryu, S. W., Ruzette, A. V. G. & Mayes, A. M. Low-temperature processing of ‘baroplastics’ by pressure-induced flow. Nature 426, 424–428 (2003).

    Article  CAS  Google Scholar 

  20. Gonzalez-Leon, J. A., Ryu, S. W., Hewlett, S. A., Ibrabim, S. H. & Mayes, A. M. Core–shell polymer nanoparticles for baroplastic processing. Macromolecules 38, 8036–8044 (2005).

    Article  CAS  Google Scholar 

  21. Lee, D. H., Kim, H. J. & Kim, J. K. Closed-loop phase behavior and baroplasticity of deuterated polystyrene-block-poly(n-pentyl methacrylate) copolymer investigated by SANS and FTIR spectroscopy. Macromol. Symp. 240, 123–129 (2006).

    Article  CAS  Google Scholar 

  22. Ryu, D. Y. et al. Effect of hydrostatic pressure on closed-loop phase behavior of block copolymers. Phys. Rev. Lett. 90, 235501 (2003).

    Article  Google Scholar 

  23. Ryu, D. Y., Jeong, U., Kim, J. K. & Russell, T. P. Closed-loop phase behaviour in block copolymers. Nature Mater. 1, 114–117 (2002).

    Article  CAS  Google Scholar 

  24. Ryu, D. Y. et al. Phase behavior of deuterated polystyrene-block-poly(n-pentyl methacrylate) copolymers. Macromolecules 36, 2894–2902 (2003).

    Article  CAS  Google Scholar 

  25. Lee, C. S. et al. Microcantilevers integrated with heaters and piezoelectric detectors for nano data-storage application. Appl. Phys. Lett. 83, 4839–4841 (2003).

    Article  CAS  Google Scholar 

  26. Kim, Y. S. et al. PZT cantilever array integrated with piezoresistor sensor for high parallel operation of AFM. Sens. Actuators A 103, 122–129 (2003).

    Article  CAS  Google Scholar 

  27. Kim, Y. S. et al. 100 × 100 thermo-piezoelectric cantilever array for SPM nano-data-storage application. Sens. Mater. 17, 057–063 (2005).

    CAS  Google Scholar 

  28. Nam, H. J. et al. Integrated nitride cantilever array with Si heaters and piezoelectric detectors for nano-data-storage application. IEEE MEMS 2005, 247–250 (2005).

    Google Scholar 

  29. Nam, H. J. et al. Silicon nitride cantilever array integrated with silicon heaters and piezoelectric detectors for probe-based data storage. Sens. Actuators A 134, 329–333 (2007).

    Article  CAS  Google Scholar 

  30. Kim, Y. S. et al. Thermo-piezoelectric Si3N4 cantilever array on CMOS circuit for high density probe-based data storage. Sens. Actuators A 135, 67–72 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Creative Research Initiative Program supported by the National Research Foundation of Korea (NRF). We appreciate the assistance of Yeong Ki Kim in experiments of FIB and TEM at National Center for Nanomaterials and Technology (NCNT), and Moon Seop Hyun in AFM experiment at National Nano Fab Center (NNFC). Small-angle X-ray scattering was performed at PLS beam line (4C2) supported by POSCO and NRF.

Author information

Authors and Affiliations

Authors

Contributions

A.J. and J.K.K. designed and implemented the system, analysed the data and wrote the paper. W.J., W.-H.J. and H.N. contributed data. All authors edited and commented on the paper.

Corresponding author

Correspondence to Jin Kon Kim.

Supplementary information

Supplementary information

Supplementary information (PDF 3851 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jo, A., Joo, W., Jin, WH. et al. Ultrahigh-density phase-change data storage without the use of heating. Nature Nanotech 4, 727–731 (2009). https://doi.org/10.1038/nnano.2009.260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.260

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing