Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Native protein nanolithography that can write, read and erase

Abstract

The development of systematic approaches to explore protein–protein interactions and dynamic protein networks is at the forefront of biological sciences. Nanopatterned protein arrays offer significant advantages for sensing applications, including short diffusion times, parallel detection of multiple targets and the requirement for only tiny amounts of sample1,2,3. Atomic force microscopy (AFM) based techniques have successfully demonstrated patterning of molecules, including stable proteins, with submicrometre resolution4,5,6,7,8,9,10,11,12,13,14,15. Here, we introduce native protein nanolithography for the nanostructured assembly of even fragile proteins or multiprotein complexes under native conditions. Immobilized proteins are detached by a novel vibrational AFM mode (contact oscillation mode) and replaced by other proteins, which are selectively self-assembled from the bulk. This nanolithography permits rapid writing, reading and erasing of protein arrays in a versatile manner. Functional protein complexes may be assembled with uniform orientation at dimensions down to 50 nm. Such fabrication of two-dimensionally arranged nano-objects with biological activity will prove powerful for proteome-wide interaction screens and single molecule/virus/cell analyses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabrication of rewritable protein nanoarrays on SAMs by native protein nanolithography.
Figure 2: Physical principle of COM.
Figure 3: Reversible in situ patterning of self-assembled protein monolayers.
Figure 4: Multiplexed lateral organization of protein assemblies on rewritable biochips.
Figure 5: Bioactive protein nanoarrays fabricated down to 50 nm.

Similar content being viewed by others

References

  1. MacBeath, G. & Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).

    CAS  Google Scholar 

  2. Zhu, H. et al. Global analysis of protein activities using proteome chips. Science 293, 2101–2105 (2001).

    Article  CAS  Google Scholar 

  3. Lynch, M. et al. Functional protein nanoarrays for biomarker profiling. Proteomics 4, 1695–1702 (2004).

    Article  CAS  Google Scholar 

  4. Unal, K., Frommer, J. & Wickramasinghe, H. K. Ultrafast molecule sorting and delivery by atomic force microscopy. Appl. Phys. Lett. 88, 183105 (2006).

    Article  Google Scholar 

  5. Jaschke, M. & Butt, H.-J. Deposition of organic material by the tip of a scanning force microscope. Langmuir 11, 1061–1064 (1995).

    Article  CAS  Google Scholar 

  6. Ginger, D. S., Zhang, H. & Mirkin, C. A. The evolution of dip-pen nanolithography. Angew. Chem. Int. Edn 43, 30–45 (2004).

    Article  Google Scholar 

  7. Lee, K. B., Park, S. J., Mirkin, C. A., Smith, J. C. & Mrksich, M. Protein nanoarrays generated by dip-pen nanolithography. Science 295, 1702–1705 (2002).

    Article  CAS  Google Scholar 

  8. Piner, R. D., Zhu, J., Xu, F., Hong, S. & Mirkin, C. A. ‘Dip-Pen’ nanolithography. Science 283, 661–663 (1999).

    Article  CAS  Google Scholar 

  9. Nam, J. M. et al. Bioactive protein nanoarrays on nickel oxide surfaces formed by dip-pen nanolithography. Angew. Chem. Int. Edn 43, 1246–1249 (2004).

    Article  CAS  Google Scholar 

  10. Xu, S. & Liu, G.-Y. Nanometer-scale fabrication by simultanuous nanoshaving and molecular self-assembly. Langmuir 13, 127–129 (1997).

    Article  Google Scholar 

  11. Wadu-Mesthrige, K., Xu, S., Amro, N. A. & Liu, G. Y. Fabrication and imaging of nanometer-sized protein patterns. Langmuir 15, 8580–8583 (1999).

    Article  CAS  Google Scholar 

  12. Wadu-Mesthrige, K., Amro, N. A., Garno, J. C., Xu, S. & Liu, G. Fabrication of nanometer-sized protein patterns using atomic force microscopy and selective immobilization. Biophys. J. 80, 1891–1899 (2001).

    Article  CAS  Google Scholar 

  13. Xu, S., Miller, S., Laibinis, P. E. & Liu, G. Y. Fabrication of nanometer scale patterns within self-assembled monolayers by nanografting. Langmuir 15, 7244–7251 (1999).

    Article  CAS  Google Scholar 

  14. Wouters, D. & Schubert, U. S. Nanolithography and nanochemistry: probe-related patterning techniques and chemical modification for nanometer-sized devices. Angew. Chem. Int. Edn 43, 2480–2495 (2004).

    Article  CAS  Google Scholar 

  15. Bruckbauer, A. et al. Multicomponent submicron features of biomolecules created by voltage controlled deposition from a nanopipet. J. Am. Chem. Soc. 125, 9834–9839 (2003).

    Article  CAS  Google Scholar 

  16. Hu, Y., Das, A., Hecht, M. H. & Scoles, G. Nanografting de novo proteins onto gold surfaces. Langmuir 21, 9103–9109 (2005).

    Article  CAS  Google Scholar 

  17. Tinazli, A. et al. High-affinity chelator thiols for switchable and oriented immobilization of histidine-tagged proteins: a generic platform for protein chip technologies. Chem. Eur. J. 11, 5249–5259 (2005).

    Article  CAS  Google Scholar 

  18. Seemüller, E. et al. Proteasome from Thermoplasma acidophilum—a threonine protease. Science 268, 579–582 (1995).

    Article  Google Scholar 

  19. Voges, D., Zwickl, P. & Baumeister, W. The 26S proteasome: A molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68, 1015–1068 (1999).

    Article  CAS  Google Scholar 

  20. Zwickl, P., Voges, D. & Baumeister, W. The proteasome: a macromolecular assembly designed for controlled proteolysis. Phil. Trans. R. Soc. B 354, 1501–1511 (1999).

    Article  CAS  Google Scholar 

  21. Bochtler, M., Ditzel, L., Groll, M., Hartmann, C. & Huber, R. The proteasome. Annu. Rev. Biophys. Biomol. Struct. 28, 295–317 (1999).

    Article  CAS  Google Scholar 

  22. Löwe, J. et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268, 533–539 (1995).

    Article  Google Scholar 

  23. Hutschenreiter, S., Tinazli, A., Model, K. & Tampé, R. Two-substrate association with the 20S proteasome at single-molecule level. EMBO J. 23, 2488–2497 (2004).

    Article  CAS  Google Scholar 

  24. Spurlino, J. C., Lu, G. Y. & Quiocho, F. A. The 2.3-Å resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis. J. Biol. Chem. 266, 5202–5219 (1991).

    CAS  Google Scholar 

  25. Waldeck, D. H., Alivisatos, A. P. & Harris, C. B. Nonradiative damping of molecular electronic excited states by metal surfaces. Surf. Sci. 158, 103–125 (1985).

    Article  CAS  Google Scholar 

  26. Lata, S. & Piehler, J. Stable and functional immobilization of histidine-tagged proteins via multivalent chelator headgroups on a molecular poly(ethylene glycol) brush. Anal. Chem. 77, 1096–1105 (2005).

    Article  CAS  Google Scholar 

  27. Piehler, J. & Schreiber, G. Fast transient cytokine-receptor interactions monitored in real time by reflectometric interference spectroscopy. Anal. Biochem. 289, 173–186 (2001).

    Article  CAS  Google Scholar 

  28. Butt, H.-J., Wang, D. N., Hansma, P. K. & Kühlbrandt, W. Effect of surface roughness of carbon support films on high-resolution electron diffraction of two-dimensional protein crystals. Ultramicroscopy 36, 307–318 (1991).

    Article  CAS  Google Scholar 

  29. Butt, H.-J., Müller, T. & Gross, H. Immobilizing biomolecules for scanning force microscopy by embedding in carbon. J. Struct. Biol. 110, 127–132 (1993).

    Article  CAS  Google Scholar 

  30. Hegner, M., Wagner, P. & Semenza, G. Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy. Surf. Sci. 291, 39–46 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Gerhard Spatz-Kümbel for technical assistance, Suman Lata and Annett Reichel for providing OG488MBP-His10, Eva Jaks for site-specifically biotinylated IFNα2, and Alart Mulder and Katrin Schulze for stimulating discussions. The work was supported by grants from the Federal Ministry of Education and Research (BMBF) (grant program: Nanobiotechnology) and the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Contributions

A.T. and R.T. conceived and designed the experiments, A.T. and M.B. performed the experiments, A.T., J.P., M.B., R.G., and R.T. analysed the data, and A.T. and R.T. co-wrote the paper.

Corresponding author

Correspondence to Robert Tampé.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary movie S1 (MOV 1884 kb)

Supplementary Information

Supplementary figures S1 and S2 (PDF 424 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tinazli, A., Piehler, J., Beuttler, M. et al. Native protein nanolithography that can write, read and erase. Nature Nanotech 2, 220–225 (2007). https://doi.org/10.1038/nnano.2007.63

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.63

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing