Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synergetic nanowire growth

Abstract

Interest in nanowires continues to grow because they hold the promise of monolithic integration of high-performance semiconductors with new functionality1,2,3,4,5 into existing silicon technology6,7,8. Most nanowires are grown using vapour–liquid–solid growth9, and despite many years of study this growth mechanism remains under lively debate. In particular, the role of the metal particle is unclear10,11,12. For instance, contradictory results have been reported on the effect of particle size on nanowire growth rate13,14,15,16,17,18. Additionally, nanowire growth from a patterned array of catalysts19,20 has shown that small wire-to-wire spacing leads to materials competition and a reduction in growth rates21. Here, we report on a counterintuitive synergetic effect resulting in an increase of the growth rate for decreasing wire-to-wire distance. We show that the growth rate is proportional to the catalyst area fraction. The effect has its origin in the catalytic decomposition of precursors and is applicable to a variety of nanowire materials and growth techniques.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SEM images of GaP nanowire patterns.
Figure 2: Cross-sectional SEM image of nanowires grown from a pattern of gold catalysts with different sizes.
Figure 3: Nanowire growth dependent on catalyst surface fraction.
Figure 4: Schematic nanowire growth model.

Similar content being viewed by others

References

  1. Johnson, J. C. et al. Single gallium nitride nanowire lasers. Nature Mater. 1, 106–110 (2002).

    Article  CAS  Google Scholar 

  2. Zheng, G. F., Patolsky, F., Cui, Y., Wang, W. U. & Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1294–1301 (2005).

    Article  CAS  Google Scholar 

  3. Borgstrom, M. T., Zwiller, V., Muller, E. & Imamoglu, A. Optically bright quantum dots in single nanowires. Nano Lett. 5, 1439–1443 (2005).

    Article  Google Scholar 

  4. van Dam, J. A., Nazarov, Y. V., Bakkers, E. P. A. M., De Franceschi, S. & Kouwenhoven, L. P. Supercurrent reversal in quantum dots. Nature 442, 667–670 (2006).

    Article  CAS  Google Scholar 

  5. Minot, E. D. et al. Single quantum dot nanowire LEDs. Nano Lett. 7, 367–371 (2007).

    Article  CAS  Google Scholar 

  6. Kamins, T. I., Li, X. & Williams, R. S. Growth and structure of chemically vapor deposited Ge nanowires on Si substrates. Nano Lett. 4, 503–506 (2004).

    Article  CAS  Google Scholar 

  7. Martensson, T. et al. Epitaxial III–V nanowires on silicon. Nano Lett. 4, 1987–1990 (2004).

    Article  CAS  Google Scholar 

  8. Bakkers, E. P. et al. Epitaxial growth of InP nanowires on germanium. Nature Mater. 3, 769–773 (2004).

    Article  CAS  Google Scholar 

  9. Wagner, R. S. & Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

    Article  CAS  Google Scholar 

  10. Persson, A. I. et al. Solid-phase diffusion mechanism for GaAs nanowire growth. Nature Mater. 3, 677–681 (2004).

    Article  CAS  Google Scholar 

  11. Hannon, J. B., Kodambaka, S., Ross, F. M. & Tromp, R. M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69–71 (2006).

    Article  CAS  Google Scholar 

  12. Verheijen, M. A., Immink, G., deSmet, T., Borgstrom, M. T. & Bakkers, E. P. A. M. Growth kinetics of heterostructured GaP–GaAs nanowires. J. Am. Chem. Soc. 128, 1353–1359 (2006).

    Article  CAS  Google Scholar 

  13. Givargizov, E. I. Fundamental aspects of VLS growth. J. Cryst. Growth 31, 20–30 (1975).

    Article  CAS  Google Scholar 

  14. Schubert, L. et al. Silicon nanowhiskers grown on 〈111〉 Si substrates by molecular-beam epitaxy. Appl. Phys. Lett. 84, 4968–4970 (2004).

    Article  CAS  Google Scholar 

  15. Dubrovskii, V. G. & Sibirev, N. V. Growth rate of a crystal facet of arbitrary size and growth kinetics of vertical nanowires. Phys. Rev. E 70, 031604 (2004).

    Article  Google Scholar 

  16. Kikkawa, J., Ohno, Y. & Takeda, S. Growth rate of silicon nanowires. Appl. Phys. Lett. 86, 123109 (2005).

    Article  Google Scholar 

  17. Johansson, J., Svensson, C. P. T., Martensson, T., Samuelson, L. & Seifert, W. Mass transport model for semiconductor nanowire growth. J. Phys. Chem. B 109, 13567–13571 (2005).

    Article  CAS  Google Scholar 

  18. Kodambaka, S., Tersoff, J., Reuter, M. C. & Ross, F. M. Diameter-independent kinetics in the vapor–liquid–solid growth of Si nanowires. Phys. Rev. Lett. 96, 096105 (2006).

    Article  CAS  Google Scholar 

  19. Haraguchi, K. et al. Self-organized fabrication of planar GaAs nanowhisker arrays. Appl. Phys. Lett. 69, 386–387 (1996).

    Article  CAS  Google Scholar 

  20. Martensson, T., Borgstrom, M., Seifert, W., Ohlsson, B. J. & Samuelson, L. Fabrication of individually seeded nanowire arrays by vapour–liquid–solid growth. Nanotechnology 14, 1255–1258 (2003).

    Article  CAS  Google Scholar 

  21. Jensen, L. E. et al. Role of surface diffusion in chemical beam epitaxy of InAs nanowires. Nano Lett. 4, 1961–1964 (2004).

    Article  CAS  Google Scholar 

  22. Chen, J., Klaumunzer, S., Lux-Steiner, M. C. & Konenkamp, R. Vertical nanowire transistors with low leakage current. Appl. Phys. Lett. 85, 1401–1403 (2004).

    Article  CAS  Google Scholar 

  23. Ng, H. T. et al. Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett. 4, 1247–1252 (2004).

    Article  CAS  Google Scholar 

  24. Denbaars, S. P., Maa, B. Y., Dapkus, P. D., Danner, A. D. & Lee, H. C. Homogeneous and heterogeneous thermal-decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD. J. Cryst. Growth 77, 188–193 (1986).

    Article  CAS  Google Scholar 

  25. Nishizawa, J., Sakuraba, H. & Kurabayashi, T. Surface reaction of trimethylgallium on GaAs. J. Vac. Sci. Technol. B 14, 136–146 (1996).

    Article  CAS  Google Scholar 

  26. Shogen, S., Matsumi, Y., Kawasaki, M., Toyoshima, I. & Okabe, H. Pyrolytic and photolytic dissociation of trimethylgallium on Si and Au substrates. J. Appl. Phys. 70, 462–468 (1991).

    Article  CAS  Google Scholar 

  27. Seifert, W. et al. Growth of one-dimensional nanostructures in MOVPE. J. Cryst. Growth 272, 211–220 (2004).

    Article  CAS  Google Scholar 

  28. Persson, A. I., Froberg, L. E., Jeppesen, S., Bjork, M. T. & Samuelson, L. Surface diffusion effects on growth of nanowires by chemical beam epitaxy. J. Appl. Phys. 101, 034313 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank F. Holthuysen for SEM imaging, C. Latta for programming the SEM image analysis tool and R. Bolt for graphical assistance. We acknowledge M. A. Verheijen, L.-F. Feiner and R. Balkenende for useful discussions. This work was supported by the European Marie Curie program, the FP6 NODE (015783) project, Dutch Institute of Metal Research (NIMR, MC3.05243) and the ministry of economic affairs of the Netherlands (NanoNed).

Author information

Authors and Affiliations

Authors

Contributions

M.T.B. and E.P.A.M.B. conceived and designed the experiments and co-wrote the paper. B.K. fabricated the e-beam patterns and G.I. is responsible for the MOVPE growth. M.T.B., E.P.A.M.B. and R.A. analysed the data.

Corresponding author

Correspondence to Erik P.A.M. Bakkers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figure S1–S4 (PDF 392 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgström, M., Immink, G., Ketelaars, B. et al. Synergetic nanowire growth. Nature Nanotech 2, 541–544 (2007). https://doi.org/10.1038/nnano.2007.263

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.263

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing