Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts

Abstract

We have succeeded in synthesizing vertically aligned doubled-walled carbon nanotube (DWNT) forests with heights of up to 2.2 mm by water-assisted chemical vapour deposition (CVD). We achieved 85% selectivity of DWNTs through a semi-empirical analysis of the relationships between the tube type and mean diameter and between the mean diameter and the film thickness of sputtered Fe, which was used here as a catalyst. Accordingly, catalysts were engineered for optimum DWNT selectivity by precisely controlling the Fe film thickness. The high efficiency of water-assisted CVD enabled the synthesis of nearly catalyst-free DWNT forests with a carbon purity of 99.95%, which could be templated into organized structures from lithographically patterned catalyst islands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trends in CNT type and diameter.
Figure 2: Selective synthesis.
Figure 3: Highly efficient DWNT synthesis.
Figure 4: Sensitivity of CNT type to sputter target.

Similar content being viewed by others

References

  1. Seko, K., Kinoshita, J. & Saito, Y. In situ transmission electron microscopy of field-emitting bundles of double-wall carbon nanotubes. Jpn J. Appl. Phys. 44, L743–L745 (2005).

    Article  CAS  Google Scholar 

  2. Wang, Y.Y. et al. Growth and field emission properties of small diameter carbon nanotubes films. Diam. Relat. Mater. 14, 714–718 (2005).

    Article  CAS  Google Scholar 

  3. Machida, H. et al. Improvement in field emission uniformity from screen-printed double-walled carbon nanotube paste by grinding. Jpn J. Appl. Phys. 45, 1044–1046 (2006).

    Article  CAS  Google Scholar 

  4. Kurachi, H. et al. FED with double-walled carbon nanotube emitters. IDW Proc. 1237–1240 (2001).

  5. Zhang, M., Atkinson, K.R. & Baughman, R.H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306, 1358–1361 (2004).

    Article  CAS  Google Scholar 

  6. Shimada, T. et al. Double-wall carbon nanotube field-effect transistors: Ambipolar transport characteristics. Appl. Phys. Lett. 84, 2412–2414 (2004).

    Article  CAS  Google Scholar 

  7. Hafner, J. H. et al. Catalytic growth of single-wall carbon nanotubes from metal particles. Chem. Phys. Lett. 296, 195–202 (1998).

    Article  CAS  Google Scholar 

  8. Flahaut, E., Peigney, A., Bacsa, W. S., Bacsa, R.R. & Laurent, Ch. CCVD synthesis of carbon nanotubes from (Mg,Co,Mo)O catalysts: influence of the proportions of cobalt and molybdenum. J. Mater. Chem. 14, 646–653 (2004).

    Article  CAS  Google Scholar 

  9. Li, W. Z., Wen, J. G., Sennett, M. & Ren, Z. F. Clean double-walled carbon nanotubes synthesized by CVD. Chem. Phys. Lett. 368, 299–306 (2003).

    Article  CAS  Google Scholar 

  10. Lyu, S. C. et al. Large-scale synthesis of high-quality double-walled carbon nanotubes by catalytic decomposition of n-hexane. J. Phys. Chem. B 108, 2192–2194 (2004).

    Article  CAS  Google Scholar 

  11. Cumings, J., Mickelson, W. & Zettl, A. Simplified synthesis of double-wall carbon nanotubes. Solid State Commun. 126, 359–362 (2003).

    Article  CAS  Google Scholar 

  12. Hiraoka, T. et al. Selective synthesis of double-wall carbon nanotubes by CCVD of acetylene using zeolite supports. Chem. Phys. Lett. 382, 679–685 (2003).

    Article  CAS  Google Scholar 

  13. Zhu, J., Yudasaka, M. & Iijima, S. A catalytic chemical vapor deposition synthesis of double-walled carbon nanotubes over metal catalysts supported on a mesoporous material. Chem. Phys. Lett. 380, 496–502 (2003).

    Article  CAS  Google Scholar 

  14. Ago, H., Nakamura, K., Uehara, N. & Tsuji, M. Roles of metal-support interaction in growth of single- and double-walled carbon nanotubes studied with diameter-controlled iron particles supported on MgO. J. Phys. Chem. B 108, 18908–18915 (2004).

    Article  CAS  Google Scholar 

  15. Lyu, S. C., Lee, T. J., Yang, C. W. & Lee, C. J. Synthesis and characterization of high-quality double-walled carbon nanotubes by catalytic decomposition of alcohol. Chem. Commun. 1404–1405 (2003).

  16. Endo, M. et al. ‘Buckypaper’ from coaxial nanotubes. Nature 433, 476 (2005).

    Article  CAS  Google Scholar 

  17. Ramesh, P. et al. Purification and characterization of double-wall carbon nanotubes synthesized by catalytic chemical vapor deposition on mesoporous silica. Chem. Phys. Lett. 418, 408–412 (2006).

    Article  CAS  Google Scholar 

  18. Hutchison, J. L. et al. Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 39, 761–770 (2001).

    Article  CAS  Google Scholar 

  19. Saito, Y., Nakahira, T. & Uemura, S. Growth conditions of double-walled carbon nanotubes in arc discharge. J. Phys. Chem. B 107, 931–934 (2003).

    Article  CAS  Google Scholar 

  20. Sugai, T. et al. New synthesis of high-quality double-walled carbon nanotubes by high-temperature pulsed arc discharge. Nano Lett. 3, 769–773 (2003).

    Article  CAS  Google Scholar 

  21. Bandow, S., Takizawa, M., Hirahara, K., Yudasaka, M. & Iijima, S. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem. Phys. Lett. 337, 48–54 (2001).

    Article  CAS  Google Scholar 

  22. Ren, W. & Cheng, H. M. Aligned double-walled carbon nanotube long ropes with a narrow diameter distribution. J. Phys. Chem. B 109, 7169–7173 (2005).

    Article  CAS  Google Scholar 

  23. Wei, J., Jiang, B., Wu, D. & Wei, B. Large-scale synthesis of long double-walled carbon nanotubes. J. Phys. Chem. B 108, 8844–8847 (2004).

    Article  CAS  Google Scholar 

  24. Hata, K. et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306, 1362–1364 (2004).

    Article  CAS  Google Scholar 

  25. Futaba, D. N. et al. Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys. Rev. Lett. 95, 056104 (2005).

  26. Futaba, D. N. et al. 84% catalyst activity of water-assisted growth of single walled characterization by a statistical and macroscopic approach. J. Phys. Chem. B 110, 8035–8038 (2006).

    Article  CAS  Google Scholar 

  27. Huang, Z. P. et al. Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes. Appl. Phys. A 74, 387–391 (2002).

    Article  CAS  Google Scholar 

  28. Wang, Y.Y., Gupta, S. & Nemanich, R. J. Role of thin Fe catalyst in the synthesis of double- and single-wall carbon nanotubes via microwave chemical vapor deposition. Appl. Phys. Lett. 85, 2601–2603 (2004).

    Article  CAS  Google Scholar 

  29. Wang, Y. Y., Gupta, S., Nemanich, R. J., Liu, Z. J. & Qin, L. C. Hollow to bamboolike internal structure transition observed in carbon nanotube films. J. Appl. Phys. 98, 014312 (2005).

  30. Futaba, D. N. et al. Nature Mater. (submitted).

  31. Xu, Y. Q. et al. Vertical array growth of small diameter single-walled carbon nanotubes. J. Am. Chem. Soc. 128, 6560–6561 (2006).

    Article  CAS  Google Scholar 

  32. Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article  CAS  Google Scholar 

  33. Hongo, H. et al. Support materials based on converted aluminum films for chemical vapor deposition growth of single-wall carbon nanotubes. Chem. Phys. Lett. 380, 158–164 (2003).

    Article  CAS  Google Scholar 

  34. Seidel, R. et al. In-situ contacted single-walled carbon nanotubes and contact improvement by electroless deposition. Nano Lett. 3, 965–968 (2003).

    Article  CAS  Google Scholar 

  35. Zhang, R. Y., Amlani, I., Baker, J., Tresek, J. & Tsui, R. K. Chemical vapor deposition of single-walled carbon nanotubes using ultrathin Ni/Al film as catalyst. Nano Lett. 3, 731–735 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Maigne, T. Nakamura and Y. Kakudate for their helpful experimental support. We also gratefully acknowledge the helpful contributions by A. Otsuka, S. Yamada, M. Mizuno and T. Hiraoka. The partial support of the New Energy and Industrial Technology Development Organization (NEDO) Nano-Carbon Technology project is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

T.Y. and K.H. conceived and designed the experiment, T.Y. and T.N. performed the experiments, K.M. contributed to material preparation, and J.F. and M.Y. contributed to TEM observations. T.Y. and K.H. co-wrote the paper.

Corresponding author

Correspondence to Kenji Hata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, T., Namai, T., Hata, K. et al. Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nature Nanotech 1, 131–136 (2006). https://doi.org/10.1038/nnano.2006.95

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.95

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing