Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires

Abstract

Advanced electronic devices based on carbon nanotubes (NTs) and various types of nanowires (NWs) could have a role in next-generation semiconductor architectures. However, the lack of a general fabrication method has held back the development of these devices for practical applications. Here we report an assembly strategy for devices based on NTs and NWs. Inert surface molecular patterns were used to direct the adsorption and alignment of NTs and NWs on bare surfaces to form device structures without the use of linker molecules. Substrate bias further enhanced the amount of NT and NW adsorption. Significantly, as all the processing steps can be performed with conventional microfabrication facilities, our method is readily accessible to the present semiconductor industry. We use this method to demonstrate large-scale assembly of NT- and NW-based integrated devices and their applications. We also provide extensive analysis regarding the reliability of the method.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the NW assembly and molecular patterning method.
Figure 2: AFM topography images of SWNTs assembled directly onto bare substrates without any electric potential.
Figure 3: AFM topography images of SWNTs and V2O5 NWs assembled directly onto various bare surfaces with an electric potential.
Figure 4: SWNT junctions and their gating effects.
Figure 5: Uniformity of assembled devices.

Similar content being viewed by others

References

  1. Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

    Article  Google Scholar 

  2. Barone, P. W., Baik, S., Heller, D. A. & Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nature Mater. 4, 86–92 (2005).

    Article  Google Scholar 

  3. Heo, Y. W. et al. Depletion-mode ZnO nanowire field-effect transistor. Appl. Phys. Lett. 85, 2274–2276 (2004).

    Article  Google Scholar 

  4. Nyamjav, D. & Ivanisevic, A. Alignment of long DNA molecules on templates generated via dip-pen nanolithography. Adv. Mater. 15, 1805–1809 (2003).

    Article  Google Scholar 

  5. Xue, Y. & Datta, S. Fermi-level alignment at metal-carbon nanotube interfaces: application to scanning tunneling spectroscopy. Phys. Rev. Lett. 83, 4844–4847 (1999).

    Article  Google Scholar 

  6. Ghosh, S., Sood, A. K. & Kumar, N. Carbon nanotube flow sensors. Science 299, 1042–1044 (2003).

    Article  Google Scholar 

  7. Ancona, M. G. et al. Patterning of narrow Au nanocluster lines using V2O5 nanowire masks and ion-beam milling. Nano Lett. 3, 135–138 (2003).

    Article  Google Scholar 

  8. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  Google Scholar 

  9. Thess, A. et al. Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996).

    Article  Google Scholar 

  10. Gole, J. L., Stout, J. D., Rauch, W. L. & Wang, Z. L. Direct synthesis of silicon nanowires, silica nanospheres, and wire-like nanosphere agglomerates. Appl. Phys. Lett. 76, 2346–2348 (2000).

    Article  Google Scholar 

  11. Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

    Article  Google Scholar 

  12. Chang, Y. J., Kang, B. H., Kim, G. T., Park, S. J. & Ha, J. S. Percolation network of growing V2O5 nanowires. Appl. Phys. Lett. 84, 5392–5394 (2004).

    Article  Google Scholar 

  13. Kim, P., Shi, L., Majumdar, A. & McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001).

    Article  Google Scholar 

  14. Huang, Y., Duan, X., Wei, Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001).

    Article  Google Scholar 

  15. Zhang, Y. et al. Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 79, 3155–3157 (2001).

    Article  Google Scholar 

  16. Krupke, R., Hennrich, F., Weber, H. B., Kappes, M. M. & Löhneysen, H. v. Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using ac-dielectrophoresis. Nano Lett. 3, 1019–1023 (2003).

    Article  Google Scholar 

  17. Oh, S. J., Zhang, J., Cheng, Y., Shimoda, H. & Zhou, O. Liquid-phase fabrication of patterned carbon nanotube field emission cathodes. Appl. Phys. Lett. 84, 3738–3740 (2004).

    Article  Google Scholar 

  18. Gao, J. et al. Large-scale fabrication of aligned single-walled carbon nanotube array and hierarchical single-walled carbon nanotube assembly. J. Am. Chem. Soc. 126, 16698–16699 (2004).

    Article  Google Scholar 

  19. Liu, J. et al. Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates. Chem. Phys. Lett. 303, 125–129 (1999).

    Article  Google Scholar 

  20. Rao, S. G., Huang, L., Setyawan, W. & Hong, S. Large-scale assembly of carbon nanotubes. Nature 425, 36–37 (2003).

    Article  Google Scholar 

  21. Tsukruk, V. V., Ko, H. & Peleshanko, S. Nanotube surface arrays: weaving, bending, and assembling on patterned silicon. Phys. Rev. Lett. 92, 065502 (2004).

    Article  Google Scholar 

  22. Wang, Y. et al. Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc. Natl Acad. Sci. USA 103, 2026–2031 (2006).

    Article  Google Scholar 

  23. Nuraje, N., Banerjee, I. A., MacCuspie, R. I., Yu, L. & Matsui, H. Biological bottom-up assembly of antibody nanotubes on patterned antigen arrays. J. Am. Chem. Soc. 126, 8088–8089 (2004).

    Article  Google Scholar 

  24. Zhou, C., Kong, J., Yenilmez, E. & Dai, H. Modulated chemical doping of individual carbon nanotubes. Science 290, 1552–1555 (2000).

    Article  Google Scholar 

  25. Collins, P. G., Arnold, M. S. & Avouris, Ph. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292, 706–709 (2001).

    Article  Google Scholar 

  26. Piner, R. D., Zhu, J., Xu, F., Hong, S. & Mirkin, C. A. ‘Dip-pen’ nanolithography. Science 283, 661–663 (1999).

    Article  Google Scholar 

  27. Demers, L. M. et al. Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 296, 1836–1838 (2002).

    Article  Google Scholar 

  28. Xia, Y. & Whitesides, G. M. Use of controlled reactive spreading of liquid alkanethiol on the surface of gold to modify the size of features produced by microcontact printing. J. Am. Chem. Soc. 117, 3274–3275 (1995).

    Article  Google Scholar 

  29. Myung, S., Lee, M., Kim, G. T., Ha, J. S. & Hong, S. Large-scale ‘surface-programmed assembly’ of pristine vanadium oxide nanowire-based devices. Adv. Mater. 17, 2361–2364 (2005).

    Article  Google Scholar 

  30. Wind, S. J., Appenzeller, J., Martel, R., Derycke, V. & Avouris, Ph. Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes. Appl. Phys. Lett. 80, 3817–3819 (2002).

    Article  Google Scholar 

  31. Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

    Article  Google Scholar 

  32. Hu, L., Hecht, D. S. & Grüner, G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 4, 2513–2517 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This project has been supported by the Korean Science and Engineering Foundation through the National Research Laboratory program and Tera-level Nano Devices program. S.H. acknowledges partial support from the Nano-Systems Institute–National Core Research Center and the Korean Ministry of Commerce, Industry, and Energy. Y.-K.K. acknowledges partial support from the Nanomanufacturing Center of Excellence.

Author information

Authors and Affiliations

Authors

Contributions

M.L., J.I., and J.K. performed SWNT experiments and analyses: B.Y.L. performed NT-based biosensor experiments; S.M., M.L. and J.I. performed V2O5 NW experiments; Y.-K.K. and L.H. contributed to data analyses and interpretation of the results; and S.H. conceived and designed the experiments.

Corresponding author

Correspondence to S. Hong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1-S4 (PDF 542 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, M., Im, J., Lee, B. et al. Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires. Nature Nanotech 1, 66–71 (2006). https://doi.org/10.1038/nnano.2006.46

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.46

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing