Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SYD-1, a presynaptic protein with PDZ, C2 and rhoGAP-like domains, specifies axon identity in C. elegans

Abstract

Axons are defined by the presence of presynaptic specializations at specific locations. We show here that loss-of-function mutations in the C. elegans gene syd-1 cause presynaptic specializations to form in the dendritic processes of GABA-expressing motor neurons during initial differentiation. At a later developmental stage, however, syd-1 is not required for the polarity respecification of a subset of these neurons. The SYD-1 protein contains PDZ, C2 and rho–GTPase activating protein (GAP)-like domains, and is localized to presynaptic terminals in mature neurons. A truncated SYD-1 that lacks the rhoGAP domain interferes with neurite outgrowth and guidance. Our data indicate that syd-1 may be involved in specifying axon identity during initial polarity acquisition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reduction of ventral NMJs in syd-1 mutants.
Figure 2: Presynaptic components are mislocalized to dendritic processes of VD neurons.
Figure 3: VDs form morphologically normal NMJs in their dorsal processes.
Figure 4: Loss of syd-1 function alters the synaptic polarity of L1, but not adult, DDs.
Figure 5: syd-1 encodes a novel rhoGAP protein with PDZ and C2 domains.
Figure 6: Expression pattern of SYD-1.
Figure 7: Synaptic localization of SYD-1:GFP may require a large portion of the protein, and SYD-1(GAPΔ) interferes with neurite outgrowth.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Bradke, F. & Dotti, C.G. Changes in membrane trafficking and actin dynamics during axon formation in cultured hippocampal neurons. Microsc. Res. Tech. 48, 3–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Bradke, F. & Dotti, C.G. The role of local actin instability in axon formation. Science 283, 1931–1934 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Bradke, F. & Dotti, C.G. Neuronal polarity: vectorial cytoplasmic flow precedes axon formation. Neuron 19, 1175–1186 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Andersen, S.S. & Bi, G.Q. Axon formation: a molecular model for the generation of neuronal polarity. Bioessays 22, 172–179 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. McFarlane, S. Dendritic morphogenesis: building an arbor. Mol. Neurobiol. 22, 1–9 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Luo, L. Rho GTPases in neuronal morphogenesis. Nat. Rev. Neurosci. 1, 173–180 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B Biol. Sci. 314, 1–340 (1986).

    Article  CAS  Google Scholar 

  8. Jin, Y., Jorgensen, E., Hartwieg, E. & Horvitz, H.R. The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development. J. Neurosci. 19, 539–548 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McIntire, S.L., Jorgensen, E., Kaplan, J. & Horvitz, H.R. The GABAergic nervous system of Caenorhabditis elegans. Nature 364, 337–341 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Sulston, J.E. Post-embryonic development in the ventral cord of Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B Biol. Sci. 275, 287–297 (1976).

    Article  CAS  Google Scholar 

  11. Sulston, J.E. & Horvitz, H.R. Post-embryonic cell lineages of the nematode Caenorhabditis elegans. Dev. Biol. 56, 110–156 (1977).

    Article  CAS  PubMed  Google Scholar 

  12. Crump, J.G., Zhen, M., Jin, Y. & Bargmann, C.I. The SAD-1 kinase regulates presynaptic vesicle clustering and axon termination. Neuron 29, 115–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Zhen, M. & Jin, Y. The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature 401, 371–375 (1999).

    CAS  PubMed  Google Scholar 

  14. Nonet, M.L. Visualization of synaptic specializations in live C. elegans with synaptic vesicle protein-GFP fusions. J. Neurosci. Methods 89, 33–40 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Hallam, S.J. & Jin, Y. lin-14 regulates the timing of synaptic remodelling in Caenorhabditis elegans. Nature 395, 78–82 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Bamber, B.A., Beg, A.A., Twyman, R.E. & Jorgensen, E.M. The Caenorhabditis elegans unc-49 locus encodes multiple subunits of a heteromultimeric GABA receptor. J. Neurosci. 19, 5348–5359 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eastman, C., Horvitz, H.R. & Jin, Y. Coordinated transcriptional regulation of the unc-25 glutamic acid decarboxylase and the unc-47 GABA vesicular transporter by the Caenorhabditis elegans UNC-30 homeodomain protein. J. Neurosci. 19, 6225–6234 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Simske, J.S., Kaech, S.M., Harp, S.A. & Kim, S.K. LET-23 receptor localization by the cell junction protein LIN-7 during C. elegans vulval induction. Cell 85, 195–204 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Rongo, C. & Kaplan, J.M. CaMKII regulates the density of central glutamatergic synapses in vivo. Nature 402, 195–199 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. White, J.G., Albertson, D.G. & Anness, M.A. Connectivity changes in a class of motoneurone during the development of a nematode. Nature 271, 764–766 (1978).

    Article  CAS  PubMed  Google Scholar 

  21. Horvitz, H.R. & Sulston, J.E. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics 96, 435–454 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rongo, C., Whitfield, C.W., Rodal, A., Kim, S.K. & Kaplan, J.M. LIN-10 is a shared component of the polarized protein localization pathways in neurons and epithelia. Cell 94, 751–759 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Vaduva, G., Martin, N.C. & Hopper, A.K. Actin-binding verprolin is a polarity development protein required for the morphogenesis and function of the yeast actin cytoskeleton. J. Cell Biol. 139, 1821–1833 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mandai, K. et al. Afadin: A novel actin filament-binding protein with one PDZ domain localized at cadherin-based cell-to-cell adherens junction. J. Cell Biol. 139, 517–528 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rittinger, K. et al. Crystal structure of a small G protein in complex with the GTPase- activating protein rhoGAP. Nature 388, 693–697 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Nonet, M.L., Grundahl, K., Meyer, B.J. & Rand, J.B. Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell 73, 1291–1305 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Koushika, S.P. et al. A post-docking role for active zone protein Rim. Nat. Neurosci. 4, 997–1005 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hall, D.H. & Hedgecock, E.M. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 65, 837–847 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Ahmari, S.E., Buchanan, J. & Smith, S.J. Assembly of presynaptic active zones from cytoplasmic transport packets. Nat. Neurosci. 3, 445–451 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Zhai, R.G. et al. Assembling the presynaptic active zone: a characterization of an active zone precursor vesicle. Neuron 29, 131–143 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Kaether, C., Skehel, P. & Dotti, C.G. Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons. Mol. Biol. Cell 11, 1213–1224 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu, W.J., Erickson, J.W., Lin, R. & Cerione, R.A. The γ-subunit of the coatomer complex binds Cdc42 to mediate transformation. Nature 405, 800–804 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. McCallum, S.J., Erickson, J.W. & Cerione, R.A. Characterization of the association of the actin-binding protein, IQGAP, and activated Cdc42 with Golgi membranes. J. Biol. Chem. 273, 22537–22544 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Rittinger, K., Taylor, W.R., Smerdon, S.J. & Gamblin, S.J. Support for shared ancestry of GAPs. Nature 392, 448–449 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Seewald, M.J., Korner, C., Wittinghofer, A. & Vetter, I.R. RanGAP mediates GTP hydrolysis without an arginine finger. Nature 415, 662–666 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Craven, S.E. & Bredt, D.S. PDZ proteins organize synaptic signaling pathways. Cell 93, 495–498 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Dong, H. et al. GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386, 279–284 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Hung, T.J. & Kemphues, K.J. PAR-6 is a conserved PDZ domain-containing protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos. Development 126, 127–135 (1999).

    CAS  PubMed  Google Scholar 

  39. Bilder, D. & Perrimon, N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 403, 676–680 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Kay, B.K., Williamson, M.P. & Sudol, M. The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J. 14, 231–241 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zoller, M. & Smith, M. Oligonucleotide-directed mutatagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template. Methods Enzymol. 154, 329–350 (1987).

    Article  CAS  PubMed  Google Scholar 

  43. Clark, S.G., Lu, X. & Horvitz, H.R. The Caenorhabditis elegans locus lin-15, a negative regulator of a tyrosine kinase signaling pathway, encodes two different proteins. Genetics 137, 987–997 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mello, C.C., Kramer, J.M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Finney, M. & Ruvkun, G. The unc-86 gene product couples cell lineage and cell identity in C. elegans. Cell 63, 895–905 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Nonet, C. Bargmann, J. Kaplan, B. Herman, B. Bamber, Y. Kohara, A. Coulson and the C. elegans genome consortium for reagents; W. Harris and K. Guan for biochemistry of SYD-1 GAP; B. Ackley, C. Suh, K. Hudson, K. Hoogner, M. Verado and M. Crookham for assistance; A. Chisholm, M. Zhen and our lab members for discussions and comments. We obtained some of these strains from the Caenorhabditis Genetics Center, which is supported by a grant from the National Institutes of Health. This work was funded by a National Science Foundation Presidential Early Career award (Y.J.) and an NSF equipment grant DBI-9729596. S.H. was supported by a GAANN predoctoral fellowship; R.B. was supported by a National Research Service Award postdoctoral fellowship. A.G. is an HHMI research associate, and Y.J. is an assistant investigator of HHMI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yishi Jin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1.

Effect of syd-1 on neuronal morphology, dendro-soma markers and ASI neuron polarity. (a, b) The overall axon morphology and cell body positions of DD and VD motor neurons in wild-type (a) and syd-1 mutant (b). No differences seen. (c, d) The expression of OSM-6::GFP (mnIs17) in phasmid neurons in wild type (c) and syd-1 mutants (d) is the same. Arrowhead, cell bodies; thin arrows, dendrites. (e, f) The expression of GLR-1::GFP (nuIs25) in the ventral cord (arrows) is the same in wild-type (e) and syd-1 mutants (f). (g) In wild-type animals, ASI neurons project a single anterior directed dendrite and a single axonal process fasiculated in the nerve ring, and the expression of SNB::GFP is restricted to the axonal projection (arrow), as illustrated in (i). (h) In syd-1 mutants, fewer SNB::GFP puncta in the axonal region of ASI (arrow) are present and irregular in size, and also mis-localized to the dendritic region (arrowhead), as illustrated in (j). * indicates posteriorly wandered axon. (JPG 41 kb)

Supplementary Fig. 2.

Sequence alignment of PDZ and C2 domains. (a) Alignment of the PDZ domain (residue 55-142). * indicates residues of PDZ-3 of PSD-95 that are required for substrate binding. (b) Alignment of the C2 domain (residue 548-671). * marks the W598A mutation. (GIF 33 kb)

Supplementary Table 1.

Quantitation of cell autonomy for SYD-1 and the effect of mutations in the C2 and GAP domains. Multiple independent transgenic lines for each construct were inspected. Quantitations were made on the staged worms from the most representative lines. (GIF 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallam, S., Goncharov, A., McEwen, J. et al. SYD-1, a presynaptic protein with PDZ, C2 and rhoGAP-like domains, specifies axon identity in C. elegans. Nat Neurosci 5, 1137–1146 (2002). https://doi.org/10.1038/nn959

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn959

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing