Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis

Abstract

During development, Reelin acts on migrating neuronal precursors and controls correct cell positioning in the cortex and other brain structures by a hitherto unidentified mechanism. Here we show that in the postnatal mouse brain, Reelin acts as a detachment signal for chain-migrating interneuron precursors in the olfactory bulb. Neuronal precursors cultured in Matrigel detached from chains and migrated individually in the presence of exogenously added Reelin protein or Reelin-expressing brain tissues. Furthermore, we found that in reeler mutant mice, neuronal precursors accumulated in the olfactory bulb and remained in clusters, indicating that they did not change from tangential chain-migration to radial individual migration. Our data provide direct evidence that Reelin acts as a detachment signal, but not a stop or guidance cue. We propose that Reelin may have comparable functions during development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Reelin and components of the Reelin-pathway in the OB and RMS of adult mice.
Figure 2: Exogenous Reelin induces cell dispersal of SVZ explants cultured in Matrigel.
Figure 3: Co-culture of SVZ explants with Reelin-expressing COS cell aggregates and brain tissues.
Figure 4: Morphological changes in the RMS and the OB of reeler mice.
Figure 5: Grafting of GFP-expressing neuronal precursors into wild-type and reeler RMS.

Similar content being viewed by others

References

  1. Rice, D.S. & Curran, T. Role of the reelin signaling pathway in central nervous system development. Annu. Rev. Neurosci. 24, 1005–1039 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. D'Arcangelo, G. et al. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374, 719–723 (1995).

    CAS  PubMed  Google Scholar 

  3. Hiesberger, T. et al. Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24, 481–489 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Trommsdorff, M. et al. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97, 689–701 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Hong, S.E. et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat. Genet. 26, 93–96 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Dulabon, L. et al. Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27, 33–44 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Gilmore, E.C. & Herrup, K. Cortical development: receiving reelin. Curr. Biol. 10, R162–R166 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Ogawa, M. et al. The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14, 899–912 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Schiffmann, S.N., Bernier, B. & Goffinet, A.M. Reelin mRNA expression during mouse brain development. Eur. J. Neurosci. 9, 1055–1071 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Quattrocchi, C.C. et al. Reelin is a serine protease of the extracellular matrix. J. Biol. Chem. 277, 303–309 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Frotscher, M. Cajal-Retzius cells, Reelin, and the formation of layers. Curr. Opin. Neurobiol. 8, 570–575 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Alvarez-Buylla, A. & Temple, S. Stem cells in the developing and adult nervous system. J. Neurobiol. 36, 105–110 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. O'Rourke, N.A. Neuronal chain gangs: homotypic contacts support migration into the olfactory bulb. Neuron 16, 1061–1064 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Lois, C. & Alvarez-Buylla, A. Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Luskin, M.B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Chazal, G., Durbec, P., Jankovski, A., Rougon, G. & Cremer, H. Consequences of neural cell adhesion molecule deficiency on cell migration in the rostral migratory stream of the mouse. J. Neurosci. 20, 1446–1457 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hu, H. Polysialic acid regulates chain formation by migrating olfactory interneuron precursors. J. Neurosci. Res. 61, 480–492 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Wu, W. et al. Directional guidance of neuronal migration in the olfactory system by the protein Slit [see comments]. Nature 400, 331–336 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hu, H. Chemorepulsion of neuronal migration by Slit2 in the developing mammalian forebrain. Neuron 23, 703–711 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Conover, J.C. et al. Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat. Neurosci. 3, 1091–1097 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Murase, S. & Horwitz, A.F. Deleted in colorectal carcinoma and differentially expressed integrins mediate the directional migration of neural precursors in the rostral migratory stream. J. Neurosci. 22, 3568–3579 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Alcantara, S. et al. Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J. Neurosci. 18, 7779–7799 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wichterle, H., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Direct evidence for homotypic, glia-independent neuronal migration. Neuron 18, 779–791 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. D'Arcangelo, G. et al. Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J. Neurosci. 17, 23–31 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lois, C., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Chain migration of neuronal precursors. Science 271, 978–981 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Jacobowitz, D.M. & Winsky, L. Immunocytochemical localization of calretinin in the forebrain of the rat. J. Comp. Neurol. 304, 198–218 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Wyss, J.M., Stanfield, B.B. & Cowan, W.M. Structural abnormalities in the olfactory bulb of the Reeler mouse. Brain. Res. 188, 566–571 (1980).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, H.M. et al. Reelin function in neural stem cell biology. Proc. Natl. Acad. Sci. USA 99, 4020–4025 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Derer, P., Derer, M. & Goffinet, A. Axonal secretion of Reelin by Cajal-Retzius cells: evidence from comparison of normal and Reln(Orl) mutant mice. J. Comp. Neurol. 440, 136–143 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Rochefort, C., Gheusi, G., Vincent, J.D. & Lledo, P.M. Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J. Neurosci. 22, 2679–2689 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Corotto, F.S., Henegar, J.R. & Maruniak, J.A. Odor deprivation leads to reduced neurogenesis and reduced neuronal survival in the olfactory bulb of the adult mouse. Neuroscience 61, 739–744 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Miyata, T., Nakajima, K., Mikoshiba, K. & Ogawa, M. Regulation of Purkinje cell alignment by reelin as revealed with CR-50 antibody. J. Neurosci. 17, 3599–3609 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Magdaleno, S., Keshvara, L. & Curran, T. Rescue of ataxia and preplate splitting by ectopic expression of Reelin in reeler mice. Neuron 33, 573–586 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Galileo, D.S., Majors, J., Horwitz, A.F. & Sanes, J.R. Retrovirally introduced antisense integrin RNA inhibits neuroblast migration in vivo. Neuron 9, 1117–1131 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Jacques, T.S. et al. Neural precursor cell chain migration and division are regulated through different beta1 integrins. Development 125, 3167–3177 (1998).

    CAS  PubMed  Google Scholar 

  36. Malatesta, P., Hartfuss, E. & Gotz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263 (2000).

    CAS  PubMed  Google Scholar 

  37. Noctor, S.C., Flint, A.C., Weissman, T.A., Dammerman, R.S. & Kriegstein, A.R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. de Bergeyck, V. et al. A truncated Reelin protein is produced but not secreted in the 'Orleans' reeler mutation (Reln[rl-Orl]). Brain Res. Mol. Brain Res. 50, 85–90 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Braissant, O., Gotoh, T., Loup, M., Mori, M. & Bachmann, C. Differential expression of the cationic amino acid transporter 2(B) in the adult rat brain. Brain Res. Mol. Brain Res. 91, 189–195 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Carroll, P. et al. Juxtaposition of CNR protocadherins and reelin expression in the developing spinal cord. Mol. Cell Neurosci. 17, 611–623 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Cremer, H. et al. Long-term but not short-term plasticity at mossy fiber synapses is impaired in neural cell adhesion molecule-deficient mice. Proc. Natl. Acad. Sci. USA 95, 13242–13247 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Hadjantonakis, A.K., Gertsenstein, M., Ikawa, M., Okabe, M. & Nagy, A. Generating green fluorescent mice by germline transmission of green fluorescent ES cells. Mech. Dev. 76, 79–90 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Curran and E. Foerster for Reelin-expressing cells, P. Durbec and G. Monti for help with the matrigel assay, G. Rougon for anti-PSA-NCAM antibody, G. Chazal for advice on immunhistochemistry and S. Alonso for Dab1 probe. We thank N. Dahmane, R. Belvindrah, P. Durbec, C. Goridis, D. Junghans and O.Pourquié for critical reading of the manuscript. This work has been supported by the Centre National de la Recherche Scientifique, Association pour la Recherche sur le Cancer and the French Ministry of Research (ACI). I.H. received a Max-Planck-Gesellschaft/CNRS fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold Cremer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hack, I., Bancila, M., Loulier, K. et al. Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis. Nat Neurosci 5, 939–945 (2002). https://doi.org/10.1038/nn923

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn923

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing