Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines

Abstract

Huntington's disease (HD) is caused by an expansion of exonic CAG triplet repeats in the gene encoding huntingtin protein (Htt), but the mechanisms by which this mutant protein causes neurodegeneration remain unknown. Here we show that lymphoblast mitochondria from patients with HD have a lower membrane potential and depolarize at lower calcium loads than do mitochondria from controls. We found a similar defect in brain mitochondria from transgenic mice expressing full-length mutant huntingtin, and this defect preceded the onset of pathological or behavioral abnormalities by months. By electron microscopy, we identified N-terminal mutant huntingtin on neuronal mitochondrial membranes, and by incubating normal mitochondria with a fusion protein containing an abnormally long polyglutamine repeat, we reproduced the mitochondrial calcium defect seen in human patients and transgenic animals. Thus, mitochondrial calcium abnormalities occur early in HD pathogenesis and may be a direct effect of mutant huntingtin on the organelle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mitochondrial abnormalities in lymphoblasts from HD patients.
Figure 2: Brain mitochondrial abnormalities in transgenic mice expressing mutant Htt.
Figure 3: Kinetic traces of mitochondrial Ca2+ uptake and release.
Figure 4: Immunocytochemistry of N-terminal Htt in brain mitochondria of YAC18 and YAC72 transgenic mice.
Figure 5: A fusion protein containing a polyglutamine tract of 62 residues reduced the Ca2+ retention capacity of normal lymphoblast mitochondria, but a fusion protein with a polyglutamine length of 19 (GST-Q19) did not.

Similar content being viewed by others

References

  1. The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

  2. Orr, H.T. Beyond the Qs in the polyglutamine diseases. Genes Dev. 15, 925–932 (2001).

    Article  CAS  Google Scholar 

  3. Rigamonti, D. et al. Wild-type huntingtin protects from apoptosis upstream of caspase-3. J. Neurosci. 20, 3705–3713 (2000).

    Article  CAS  Google Scholar 

  4. Leavitt, B.R. et al. Wild-type huntingtin reduces the cellular toxicity of mutant huntingtin in vivo. Am. J. Hum. Genet. 68, 313–324 (2001).

    Article  CAS  Google Scholar 

  5. Zuccato, C. et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science 293, 493–498 (2001).

    Article  CAS  Google Scholar 

  6. Cattaneo, E. et al. Loss of normal huntingtin function: new developments in Huntington's disease research. Trends Neurosci. 24, 182–188 (2001).

    Article  CAS  Google Scholar 

  7. Scherzinger, E. et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549–558 (1997).

    Article  CAS  Google Scholar 

  8. DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997).

    Article  CAS  Google Scholar 

  9. Davies, S.W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548 (1997).

    Article  CAS  Google Scholar 

  10. Faber, P.W. et al. Huntingtin interacts with a family of WW domain proteins. Hum. Mol. Genet. 7, 1463–1474 (1998).

    Article  CAS  Google Scholar 

  11. Wanker, E.E. et al. HIP-I: a huntingtin interacting protein isolated by the yeast two- hybrid system. Hum. Mol. Genet. 6, 487–495 (1997).

    Article  CAS  Google Scholar 

  12. Li, X.J. et al. A huntingtin-associated protein enriched in brain with implications for pathology. Nature 378, 398–402 (1995).

    Article  CAS  Google Scholar 

  13. Cha, J.H. et al. Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human Huntington disease gene. Proc. Natl. Acad. Sci. USA 95, 6480–6485 (1998).

    Article  CAS  Google Scholar 

  14. Luthi-Carter, R. et al. Decreased expression of striatal signaling genes in a mouse model of Huntington's disease. Hum. Mol. Genet. 9, 1259–1271 (2000).

    Article  CAS  Google Scholar 

  15. Steffan, J.S. et al. The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl. Acad. Sci USA 97, 6763–6768 (2000).

    Article  CAS  Google Scholar 

  16. Nucifora, F.C., Jr. et al. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291, 2423–2428 (2001).

    Article  CAS  Google Scholar 

  17. Steffan, J.S. et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413, 739–743 (2001).

    Article  CAS  Google Scholar 

  18. Tabrizi, S.J. et al. Biochemical abnormalities and excitotoxicity in Huntington's disease brain. Ann. Neurol. 45, 25–32 (1999).

    Article  CAS  Google Scholar 

  19. Beal, M.F., Aging, energy, and oxidative stress in neurodegenerative diseases. Ann. Neurol. 38, 357–366 (1995).

    Article  CAS  Google Scholar 

  20. Greene, J.G. & Greenamyre, J.T. Bioenergetics and glutamate excitotoxicity. Prog. Neurobiol. 48, 613–634 (1996).

    Article  CAS  Google Scholar 

  21. Sawa, A. et al. Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nat. Med. 5, 1194–1198 (1999).

    Article  CAS  Google Scholar 

  22. Gutekunst, C.A. et al. Identification and localization of huntingtin in brain and human lymphoblastoid cell lines with anti-fusion protein antibodies. Proc. Natl. Acad. Sci. USA 92, 8710–8714 (1995).

    Article  CAS  Google Scholar 

  23. Hodgson, J.G. et al. A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity and selective striatal neurodegeneration. Neuron 23, 181–192 (1999).

    Article  CAS  Google Scholar 

  24. Bernardi, P. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev. 79, 1127–1155 (1999).

    Article  CAS  Google Scholar 

  25. Gutekunst, C.A. et al. The cellular and subcellular localization of huntingtin-associated protein 1 (HAP1): comparison with huntingtin in rat and human. J. Neurosci. 18, 7674–7686 (1998).

    Article  CAS  Google Scholar 

  26. Gutekunst, C.A. et al. Nuclear and neuropil aggregates in Huntington's disease: relationship to neuropathology. J. Neurosci. 19, 2522–2534 (1999).

    Article  CAS  Google Scholar 

  27. Monoi, H., Futaki, S., Kugimiya, S., Minakata, H. & Yoshihara, K. Poly-L-glutamine forms cation channels: relevance to the pathogenesis of the polyglutamine diseases. Biophys. J. 78, 2892–2899 (2000).

    Article  CAS  Google Scholar 

  28. Ordway, J.M. et al. Ectopically expressed CAG repeats cause intranuclear inclusions and a progressive late onset neurological phenotype in the mouse. Cell 91, 753–763 (1997).

    Article  CAS  Google Scholar 

  29. Zeron, M.M. et al. Increased sensitivity to N-methyl-d-aspartate receptor–mediated excitotoxicity in a mouse model of Huntington's disease. Neuron 33, 849–860 (2002).

    Article  CAS  Google Scholar 

  30. Betarbet, R. et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci. 3, 1301–1306 (2000).

    Article  CAS  Google Scholar 

  31. Kim, Y.J. et al. Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc. Natl. Acad. Sci. USA 98, 12784–12789 (2001).

    Article  CAS  Google Scholar 

  32. Trounce, I.A., Kim, Y.L., Jun, A.S. & Wallace, D.C. Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol. 264, 484–509 (1996).

    Article  CAS  Google Scholar 

  33. Sims, N.R. Rapid isolation of metabolically active mitochondria from rat brain and subregions using Percoll density gradient centrifugation. J. Neurochem. 55, 698–707 (1990).

    Article  CAS  Google Scholar 

  34. Onodera, O. et al. Oligomerization of expanded-polyglutamine domain fluorescent fusion proteins in cultured mammalian cells. Biochem. Biophys. Res. Commun. 238, 599–605 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Huntington's Disease Society of America's Coalition for the Cure program (A.V.P., C.A.G., B.R.L., M.R.H. and J.T.G.), the Hereditary Disease Foundation (M.R.H.), the Huntington Society of Canada (M.R.H. and B.R.L.), a Canada Research Chair (M.R.H.), the Canadian Institutes of Health Research (M.R.H. and B.R.L.) and a National Institutes of Health grant AG14648 (J.T.G. and A.V.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Timothy Greenamyre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panov, A., Gutekunst, CA., Leavitt, B. et al. Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nat Neurosci 5, 731–736 (2002). https://doi.org/10.1038/nn884

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn884

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing