Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synaptotagmin function in dense core vesicle exocytosis studied in cracked PC12 cells

Abstract

Ca2+-triggered dense-core vesicle exocytosis in PC12 cells does not require vesicular synaptotagmins 1 and 2, but may use plasma membrane synaptotagmins 3 and 7 as Ca2+ sensors. In support of this hypothesis, C2 domains from the plasma membrane but not vesicular synaptotagmins inhibit PC12 cell exocytosis. Ca2+ induces binding of both plasma membrane and vesicular synaptotagmins to phospholipids and SNAREs (soluble N-ethylmaleimide-sensitive attachment protein receptors), although with distinct apparent Ca2+ affinities. Here we used gain-of-function C2-domain mutants of synaptotagmin 1 and loss-of-function C2-domain mutants of synaptotagmin 7 to examine how synaptotagmins function in dense-core vesicle exocytosis. Our data indicate that phospholipid- but not SNARE-binding by plasma membrane synaptotagmins is the primary determinant of Ca2+-triggered dense-core vesicle exocytosis. These results support a general lipid-based mechanism of action of synaptotagmins in exocytosis, with the specificity of various synaptotagmins for different types of fusion governed by their differential localizations and Ca2+ affinities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence determinants of the Ca2+ affinities of C2 domains.
Figure 2: Phospholipid-specificity during Ca2+-dependent phospholipid binding of various synaptotagmin 1 and 7 C2A-domain mutants.
Figure 3: Apparent Ca2+ affinities of wild-type and mutant synaptotagmin 1 and 7 C2A domains measured with a resin-pulldown assay.
Figure 4: Ca2+-dependent binding of wild-type and mutant synaptotagmin 1 and 7 C2A domains to the SNARE proteins synaptobrevin/VAMP 2, syntaxin 1 and SNAP-25.
Figure 5: Comparative analysis the inhibition of Ca2+-triggered exocytosis in cracked PC12 cells by wild type and mutant C2A domains.
Figure 6: Ca2+-dependence of exocytosis in cracked PC12 cells in the presence of wild-type and mutant C2A domains from synaptotagmin 1 and 7.
Figure 7: Comparison of Ca2+-dependent phospholipid binding by the C2A domains of synaptotagmins 1 (Syt 1-C2A) and 7 (Syt 7-C2A) and the C2 domain of cytoplasmic phospholipase A2 (cPLA2-C2): effects of phospholipid composition.
Figure 8: Effects of the cPLA2 C2 domain on Ca2+-triggered exocytosis in cracked PC12 cells.

Similar content being viewed by others

References

  1. Matthew, W.D., Tsavaler, L. & Reichardt, L.F. Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J. Cell Biol. 91, 257–269 (1981).

    Article  CAS  Google Scholar 

  2. Perin, M.S., Brose, N., Jahn, R. & Südhof, T.C. Domain structure of synaptotagmin (p65). J. Biol. Chem. 266, 623–629 (1991).

    CAS  PubMed  Google Scholar 

  3. Geppert, M., Archer, B.T. III & Südhof, T.C. Synaptotagmin II: a novel differentially distributed form of synaptotagmin. J. Biol. Chem. 266, 13548–13552 (1991).

    CAS  PubMed  Google Scholar 

  4. Geppert, M., Goda, Y., Hammer, R.E., Li, C., Rosahl, T.W., Stevens, C.F. & Südhof, T.C. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79, 717–727 (1994).

    Article  CAS  Google Scholar 

  5. Fernández-Chacón, R. et al. Synaptotagmin I functions as a Ca2+-regulator of release probability. Nature 410, 41–49 (2001).

    Article  Google Scholar 

  6. Voets, T. et al. Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin 1. Proc. Natl. Acad. Sci. USA 98, 11680–11685 (2001).

    Article  CAS  Google Scholar 

  7. Davletov, B. & Südhof, T.C. A single C2-domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid-binding. J. Biol. Chem. 268, 26386–26390 (1993).

    CAS  PubMed  Google Scholar 

  8. Chapman, E.R. & Jahn, R. Calcium-dependent interaction of the cytoplasmic region of synaptotagmin with membranes. Autonomous function of a single C2-homologous domain. J. Biol. Chem. 269, 5735–5741 (1994).

    CAS  PubMed  Google Scholar 

  9. Li, C. et al. Ca2+-dependent and Ca2+-independent activities of neural and nonneural synaptotagmins. Nature 375 594–599 (1995).

    Article  CAS  Google Scholar 

  10. Fernandez, I. et al. Three-dimensional structure of the synaptotagmin 1 C2B-domain: synaptotagmin 1 as a phospholipid-binding machine. Neuron 32, 1057–1069 (2001).

    Article  CAS  Google Scholar 

  11. Sugita, S., Shin, O-H., Han, W., Lao, Y. & Südhof, T.C. Synaptotagmins form a hierarchy of exocytotic Ca2+-sensors with distinct Ca2+-affinities. EMBO J. 21, 270–280 (2002).

    Article  CAS  Google Scholar 

  12. Südhof, T.C. Synaptotagmins: why so many? J. Biol. Chem. 277, 7629–7632 (2002).

    Article  Google Scholar 

  13. Bennett, M.K., Calakos, N. & Scheller, R.H. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257, 255–259 (1992).

    Article  CAS  Google Scholar 

  14. Kee, Y. & Scheller, R.H. Localization of synaptotagmin-binding domains on syntaxin. J. Neurosci. 16, 1975–1981 (1996).

    Article  CAS  Google Scholar 

  15. Sugita, S., Hata, Y. & Südhof, T.C. Distinct Ca2+-dependent properties of the first and second C2-domains of synaptotagmin I. J. Biol. Chem. 271, 1262–1265 (1996).

    Article  CAS  Google Scholar 

  16. Chapman, E.R., An, S., Edwardson, J.M. & Jahn, R. A novel function for the second C2 domain of synaptotagmin. Ca2+-triggered dimerization. J. Biol. Chem. 271, 5844–5849 (1996).

    Article  CAS  Google Scholar 

  17. Zhang, X., Rizo, R. & Südhof, T.C. Mechanism of phospholipid binding by the C2A-domain of synaptotagmin. Biochemistry 37, 12395–12403 (1998).

    Article  CAS  Google Scholar 

  18. Bollmann, J.H., Sakmann, B. & Borst, J.G. Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289, 953–957 (2000).

    Article  CAS  Google Scholar 

  19. Schneggenburger, R. & Neher, E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889–893 (2000).

    Article  CAS  Google Scholar 

  20. Shoji-Kasai, Y. et al. Neurotransmitter release from synaptotagmin-deficient clonal variants of PC12 cells. Science 256, 1821–1823 (1992).

    Article  CAS  Google Scholar 

  21. Wang, C.T. et al. Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science 294, 1111–1115 (2001).

    Article  CAS  Google Scholar 

  22. Mizuta, M. et al. Synaptotagmin III is a novel isoform of rat synaptotagmin expressed in endocrine and neuronal cells. J. Biol. Chem. 269, 11675–11678 (1994).

    CAS  PubMed  Google Scholar 

  23. Sugita, S. et al. Synaptotagmin VII as a plasma membrane Ca2+-sensor in exocytosis. Neuron 30, 459–473 (2001).

    Article  CAS  Google Scholar 

  24. Butz, S., Fernandez-Chacon, R., Schmitz, F., Jahn, R. & Südhof, T.C. The subcellular localizations of atypical synaptotagmins: synaptotagmin III is enriched in synapses and synaptic plasma membranes but not in synaptic vesicles. J. Biol. Chem. 274, 18290–18296 (1999).

    Article  CAS  Google Scholar 

  25. Ahnert-Hilger, G.M., Brautigam, M. & Gratzl, M. Ca2+-stimulated catecholamine release from alpha-toxin-cracked PC12 cells: biochemical evidence for exocytosis and its modulation by protein kinase C and G proteins. Biochemistry 26, 7842–7848 (1987).

    Article  CAS  Google Scholar 

  26. Chamberlain, L.H., Roth, D., Morgan, A. & Burgoyne, R.D. Distinct effects of α-SNAP, 14-3-3 proteins, and calmodulin on priming and triggering of regulated exocytosis. J. Cell Biol. 130, 1063–1070 (1995).

    Article  CAS  Google Scholar 

  27. Chen, Y.A., Scales, S.J., Patel, S.M., Doung, Y-C. & Scheller, R.H. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97, 165–174 (1999).

    Article  CAS  Google Scholar 

  28. Avery, J. et al. A cell-free system for regulated exocytosis in PC12 cells. J. Cell Biol. 148, 317–324 (2000).

    Article  CAS  Google Scholar 

  29. Earles, C.A., Bai, J., Wang, P. & Chapman, E.R. The tandem C2-domains of synaptotagmin contain redundant Ca2+-binding sites that cooperate to engage t-SNAREs and trigger exocytosis. J. Cell Biol. 154, 1117–1123 (2001).

    Article  CAS  Google Scholar 

  30. Banerjee, A., Kowalchyk, J.A., Dasgupta, B.R. & Martin, T.F. SNAP-25 is required for a late postdocking step in Ca2+-dependent exocytosis. J. Biol. Chem. 271, 20227–20230 (1996).

    Article  CAS  Google Scholar 

  31. Zhong, P., Chen, Y.A., Tam, D., Chung, D., Scheller, R.H. & Miljanich, G.P. An α-helical minimal binding domain within the H3 domain of syntaxin is required for SNAP-25 binding. Biochemistry 36, 4317–4326 (1997).

    Article  CAS  Google Scholar 

  32. Shao, X., Davletov, B.A., Sutton, R.B., Südhof, T.C. & Rizo, J. Bipartite Ca2+-binding motif in C2-domains of synaptotagmin and protein kinase C. Science 273, 248–251 (2001).

    Article  Google Scholar 

  33. Gerber, S.H., Rizo, J. & Südhof, T.C. The top loops of the C2-domains from synaptotagmin and phospholipase A2 control function specificity. J. Biol. Chem. 276, 32288–32292 (2001).

    Article  CAS  Google Scholar 

  34. Gerber, S.H., Rizo, J., & Südhof, T.C. Role of electrostatic and hydrophobic interactions in Ca2+-dependent phospholipid binding by the C2A-domain of synaptotagmin 1. Diabetes 51 (suppl. 1), S12–S18 (2002).

    Article  CAS  Google Scholar 

  35. Chapman, E.R. & Davis, A.F. Direct interaction of a Ca2+-binding loop of synaptotagmin with lipid bilayers. J. Biol. Chem. 273, 13995–14001 (1998).

    Article  CAS  Google Scholar 

  36. Gerona, R.R., Larsen, E.C., Kowalchyk, J.A., & Martin, T.F. The C terminus of SNAP25 is essential for Ca2+-dependent binding of synaptotagmin to SNARE complexes. J. Biol. Chem. 275, 6328–6336 (2000).

    Article  CAS  Google Scholar 

  37. Voets, T. Dissection of three Ca2+-dependent steps leading to secretion in chromaffin cells from mouse adrenal slices. Neuron 28, 537–545 (2000).

    Article  CAS  Google Scholar 

  38. Nalefski, E.A. et al. Independent folding and ligand specificity of the C2 calcium-dependent lipid binding domain of cytosolic phospholipase A2. J. Biol. Chem. 273, 1365–1372 (1998).

    Article  CAS  Google Scholar 

  39. Davletov, B., Perisic, O. & Williams, R.L. Calcium-dependent membrane penetration is a hallmark of the C2 domain of cytosolic phospholipase A2 whereas the C2A domain of synaptotagmin binds membranes electrostatically. J. Biol. Chem. 273, 19093–19096 (1998).

    Article  CAS  Google Scholar 

  40. Gennis, R.B. Biomembranes: Molecular Structure and Function (Springer, New York, 1989).

    Book  Google Scholar 

  41. Walent, J.H., Porter, B.W. & Martin, T.F. A novel 145 kd brain cytosolic protein reconstitutes Ca2+-regulated secretion in permeable neuroendocrine cells. Cell 70, 765–775 (1992).

    Article  CAS  Google Scholar 

  42. Guan, K.L. & Dixon, J.E. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal. Biochem. 192, 262–267 (1991).

    Article  CAS  Google Scholar 

  43. Ubach, J. et al. The C2B-domain of synaptotagmin 1 is a Ca2+-binding module. Biochemistry 40, 5854–5860 (2001).

    Article  CAS  Google Scholar 

  44. Klenchin, V.A., Kowalshyk, J.A. & Martin, T.F.J. Large dense-core vesicle exocytosis in PC12 cells. Methods 18, 204–208 (1998).

    Article  Google Scholar 

  45. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  46. Johnston, P.A., Jahn, R. & Südhof, T.C. Transmembrane topography and evolutionary conservation of synaptophysin. J. Biol. Chem. 264, 1268–1273 (1989).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. Leznicki, A. Roth and E. Borowicz for technical assistance, and S. Gerber for the phospholipase A2 C2-domain expression plasmid. This study was supported by grants from the NIH to J.R. (NS37200 and NS40944).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Südhof.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, OH., Rizo, J. & Südhof, T. Synaptotagmin function in dense core vesicle exocytosis studied in cracked PC12 cells. Nat Neurosci 5, 649–656 (2002). https://doi.org/10.1038/nn869

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn869

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing