Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration

Abstract

Disruption of the dopaminergic system has been implicated in the etiology of many pathological conditions, including drug addiction. Here we used positron emission tomography (PET) imaging to study brain dopaminergic function in individually housed and in socially housed cynomolgus macaques (n = 20). Whereas the monkeys did not differ during individual housing, social housing increased the amount or availability of dopamine D2 receptors in dominant monkeys and produced no change in subordinate monkeys. These neurobiological changes had an important behavioral influence as demonstrated by the finding that cocaine functioned as a reinforcer in subordinate but not dominant monkeys. These data demonstrate that alterations in an organism's environment can produce profound biological changes that have important behavioral associations, including vulnerability to cocaine addiction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: [18F]FCP has high uptake and linear rate of washout in the basal ganglia (BG; black symbols) relative to the cerebellum (Cb; white symbols).
Figure 2: [18F]FCP binding potential changes as a function of social rank.
Figure 3: [18F]FCP binding potential increases in dominant monkeys.
Figure 4: Reinforcing effects of cocaine are greater in subordinate monkeys compared to dominant animals.

Similar content being viewed by others

References

  1. Leshner, A. I. Vulnerability to addiction: new research opportunities. Am. J. Med. Genet. 96, 590–591 (2000).

    CAS  PubMed  Google Scholar 

  2. Nader, M. A. & Woolverton, W. L. Effects of increasing the magnitude of an alternative reinforcer on drug choice in a discrete-trials choice procedure. Psychopharmacology 105, 169–174 (1991).

    CAS  PubMed  Google Scholar 

  3. Schenk, S., Lacelle, G., Gorman, K. & Amit, Z. Cocaine self-administration in rats influenced by environmental conditions: implications for the etiology of drug abuse. Neurosci. Lett. 81, 227–231 (1987).

    CAS  PubMed  Google Scholar 

  4. LeSage, M. G., Stafford, D. & Glowa, J. R. Preclinical research on cocaine self-administration: environmental determinants and their interaction with pharmacological treatment. Neurosci. Biobehav. Rev. 23, 717–741 (1999).

    CAS  PubMed  Google Scholar 

  5. Schultz, W., Tremblay, L. & Hollerman, J. R. Reward processing in primate orbitofrontal cortex and basal ganglia. Cereb. Cortex 10, 272–284 (2000).

    CAS  PubMed  Google Scholar 

  6. Bowling, S. L., Rowlett, J. K. & Bardo, M. T. The effect of environmental enrichment on amphetamine-stimulated locomotor activity, dopamine synthesis and dopamine release. Neuropharmacology 32, 885–893 (1993).

    CAS  PubMed  Google Scholar 

  7. Hurd, Y. L., Svensson, P. & Ponten, M. The role of dopamine, dynorphin, and CART systems in the ventral striatum and amygdala in cocaine abuse. Ann. NY Acad. Sci. 877, 499–506 (1999).

    CAS  PubMed  Google Scholar 

  8. Volkow, N. D., Fowler, J. S. & Wang, G. J. Imaging studies on the role of dopamine in cocaine reinforcement and addiction in humans. J. Psychopharmacol. 13, 337–345 (1999).

    CAS  PubMed  Google Scholar 

  9. Blanc, G. et al. Response to stress of mesocortico-frontal dopaminergic neurones in rats after long-term isolation. Nature 284, 265–267 (1980).

    CAS  PubMed  Google Scholar 

  10. Rilke, O., May, T., Oehler, J. & Wolffgramm, J. Influences of housing conditions and ethanol intake on binding characteristics of D2, 5-HT1A, and benzodiazepine receptors of rats. Pharmacol. Biochem. Behav. 52, 23–28 (1995).

    CAS  PubMed  Google Scholar 

  11. Hall, F. S. et al. Isolation rearing in rats: pre- and postsynaptic changes in striatal dopaminergic systems. Pharmacol. Biochem. Behav. 59, 859–872 (1998).

    CAS  PubMed  Google Scholar 

  12. Grant, K. A. et al. Effect of social status on striatal dopamine D2 receptor binding characteristics in cynomolgus monkeys assessed with positron emission tomography. Synapse 29, 80–83 (1998).

    CAS  PubMed  Google Scholar 

  13. Blum, K., Cull, J.G., Braverman, E. R. & Comings, D. E. Reward deficiency syndrome. Am. Scientist 84, 132–145 (1996).

    Google Scholar 

  14. Morgan, D. et al. Predictors of social status in cynomolgus monkeys (Macaca fascicularis) after group formation. Am. J. Primatol. 52, 115–131 (2000).

    CAS  PubMed  Google Scholar 

  15. Nader, M. A. et al. PET imaging of dopamine D2 receptors with [18F]fluoroclebopride in monkeys: effects of isoflurane- and ketamine-induced anesthesia. Neuropsychopharmacology 21, 589–596 (1999).

    CAS  PubMed  Google Scholar 

  16. Crowley, T. J., Stynes, A. J., Hydinger, M. & Kaufman, I. C. Ethanol, methamphetamine, pentobarbital, morphine, and monkey social behavior. Arch. Gen. Psychiatry 31, 829–838 (1974).

    CAS  PubMed  Google Scholar 

  17. Crowley, T. J. et al. Cocaine, social behavior, and alcohol-solution drinking in monkeys. Drug Alcohol Depend. 29, 205–223 (1992).

    CAS  PubMed  Google Scholar 

  18. Martin, S. P., Smith, E. O. & Byrd, L. D. Effects of dominance rank on d-amphetamine-induced increases in aggression. Pharmacol. Biochem. Behav. 37, 493–496 (1990).

    CAS  PubMed  Google Scholar 

  19. Miczek, K. A. & Gold, L. H. d-Amphetamine in squirrel monkeys of different social status: effects on social and agonistic behavior, locomotion, and stereotypes. Psychopharmacology 81, 183–190 (1983).

    CAS  PubMed  Google Scholar 

  20. Bozarth, M. A., Murray, A. & Wise, R. A. Influence of housing conditions on the acquisition of intravenous heroin and cocaine self-administration in rats. Pharmacol. Biochem. Behav. 33, 903–907 (1989).

    CAS  PubMed  Google Scholar 

  21. Phillips, G. D. et al. Isolation rearing enhances the locomotor response to cocaine and a novel environment, but impairs the intravenous self-administration of cocaine. Psychopharmacology 115, 407–418 (1994).

    CAS  PubMed  Google Scholar 

  22. Boyle, A. E., Gill, K. J., Smith, B. R. & Amit, Z. Differential effects of an early housing manipulation on cocaine-induced activity and self-administration in laboratory rats. Pharmacol. Biochem. Behav. 39, 269–274 (1991).

    CAS  PubMed  Google Scholar 

  23. Verhoeff, N. P. Radiotracer imaging of dopaminergic transmission in neuropsychiatric disorders. Psychopharmacology 147, 217–249 (1999).

    CAS  PubMed  Google Scholar 

  24. Calabresi, P., De Murtas, M. & Bernardi, G. The neostriatum beyond the motor function: experimental and clinical evidence. Neuroscience 78, 39–60 (1997).

    CAS  PubMed  Google Scholar 

  25. Wang, G. J. et al. Brain dopamine and obesity. Lancet 357, 354–357 (2001).

    CAS  PubMed  Google Scholar 

  26. Piazza, P. V. & Le Moal, M. The role of stress in drug self-administration. Trends Pharmacol. Sci. 19, 67–74 (1998).

    CAS  PubMed  Google Scholar 

  27. Volkow, N. D. et al. Effects of chronic cocaine abuse on postsynaptic dopamine receptors. Am. J. Psychiatry. 147, 719–724 (1990).

    CAS  PubMed  Google Scholar 

  28. Volkow, N. D. et al. Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse 14, 169–177 (1993).

    CAS  PubMed  Google Scholar 

  29. Piazza, P. V. & LeMoal, M. Pathophysiological basis of vulnerability to drug abuse: role of an interaction between stress, glucocorticoids, and dopaminergic neurons. Annu. Rev. Pharmacol. Toxicol. 36, 359–378 (1996).

    CAS  PubMed  Google Scholar 

  30. Lucas, L. R. et al. Neurochemical characterization of individual vulnerability to addictive drugs in rats. Eur. J. Neurosci. 10, 3153–3163 (1998).

    CAS  PubMed  Google Scholar 

  31. Piazza, P. V., Deminiere, J.-M., Le Moal, M. & Simon, H. Factors that predict individual vulnerability to amphetamine self-administration. Science 245, 1511–1513 (1989).

    CAS  PubMed  Google Scholar 

  32. Piazza, P. V., Deroche-Gamonent, V., Rouge-Pont, F. & Le Moal, M. Vertical shifts in self-administration dose-response functions predict a drug-vulnerable phenotype predisposed to addiction. J. Neurosci. 20, 4226–4232 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Marinelli, M. & White, F. J. Enhanced vulnerability to cocaine self-administration is associated with elevated impulse activity of midbrain dopamine neurons. J. Neurosci. 20, 8876–8885 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nader, M. A., Green, K. L., Luedtke, R. R. & Mach, R. H. The effects of benzamide analogues on cocaine self-administration in rhesus monkeys. Psychopharmacology 147, 143–152 (1999).

    CAS  PubMed  Google Scholar 

  35. Caine, S. B., Negus, S. S. & Mello, N. K. Effects of dopamine D(1-like) and D(2-like) agonists on cocaine self-administration in rhesus monkeys: rapid assessment of cocaine dose-effect functions. Psychopharmacology 148, 41–51 (2000).

    CAS  PubMed  Google Scholar 

  36. Khroyan, T. V., Barrett-Larimore, R. L., Rowlett, J. K. & Spealman, R.D. Dopamine D1- and D2-like receptor mechanisms in relapse to cocaine-seeking behavior: effects of selective antagonists and agonists. J. Pharmacol. Exp. Ther. 294, 680–687 (2000).

    CAS  PubMed  Google Scholar 

  37. Volkow, N. D. et al. Prediction of reinforcing responses to psychostimulants in humans by brain dopamine D2 receptor levels. Am. J. Psychiatry 156, 1440–1443 (1999).

    CAS  PubMed  Google Scholar 

  38. Mach, R. H. et al. Comparison of two fluorine-18 labeled benzamide derivatives that bind reversibly to dopamine D2 receptor: in vitro binding studies and positron emission tomography. Synapse 24, 322–333 (1996).

    CAS  PubMed  Google Scholar 

  39. Mach, R. H. et al. Use of positron emission tomography to study the dynamics of psychostimulant-induced dopamine release. Pharmacol. Biochem. Behav. 57, 477–486 (1997).

    CAS  PubMed  Google Scholar 

  40. Laruelle, M. Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J. Cereb. Blood Flow Metab. 20, 423–451 (2000).

    CAS  PubMed  Google Scholar 

  41. Woods, R. P. et al. Automated image registration: I. General methods and intrasubject, intramodality validation. J. Comput. Assist. Tomogr. 22, 141–152 (1998).

    Google Scholar 

  42. Logan, J. et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-cocaine PET studies in human subjects. J. Cereb. Blood Flow Metab. 10, 740–747 (1990).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank C.S. Carter for comments on the manuscript; C. Hubbard, T. Moore and J. Lile for assistance with handling the monkeys; R. Kuhner for conducting the PET scans; and E. Nicks and P. Warren for assistance analyzing the social behavior data. This research was supported by the National Institute on Drug Abuse Grant DA-10584.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Nader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, D., Grant, K., Gage, H. et al. Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat Neurosci 5, 169–174 (2002). https://doi.org/10.1038/nn798

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn798

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing