Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NMDA receptor activation limits the number of synaptic connections during hippocampal development

Abstract

Activity-dependent synaptic plasticity triggered by N-methyl-d-aspartate (NMDA) receptor activation is a fundamental property of many glutamatergic synapses and may be critical for the shaping and refinement of the structural and functional properties of neuronal circuits during early postnatal development. Using a combined morphological and electrophysiological approach, we showed that chronic blockade of NMDA receptors in hippocampal slice cultures during the first two weeks of postnatal development leads to a substantial increase in synapse number and results in a more complex dendritic arborization of CA1 pyramidal cells. Thus, the development of excitatory circuitry in the hippocampus is determined by two opposing processes: NMDA receptor-independent synapse formation and NMDA receptor-dependent attenuation of synaptogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chronic NMDA receptor blockade leads to an increase in mEPSC frequency in CA1 pyramidal cells.
Figure 2: The probability of release is not increased in CPP-treated slices.
Figure 3: Chronic NMDA receptor blockade does not affect the AMPA/NMDA ratio of evoked and miniature EPSCs.
Figure 4: Chronic NMDA receptor blockade increases the density of putative presynaptic boutons.
Figure 5: Chronic NMDA receptor blockade increases the complexity of dendritic arborization.
Figure 6: Effects of chronic NMDA receptor blockade on dendritic spines.

Similar content being viewed by others

References

  1. Wu, G., Malinow, R. & Cline, H. T. Maturation of a central glutamatergic synapse. Science 274, 972–976 (1996).

    Article  CAS  Google Scholar 

  2. Durand, G. M., Kovalchuk, Y. & Konnerth, A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381, 71–75 (1996).

    Article  CAS  Google Scholar 

  3. Isaac, J. T. R., Crair, M. C., Nicoll, R. A. & Malenka, R. C. Silent synapses during development of thalamocortical inputs. Neuron 18, 269–280 (1997).

    Article  CAS  Google Scholar 

  4. Goodman, C.S. & Shatz, C.J. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72, 77–98 (1993).

    Article  Google Scholar 

  5. Cline, H.T. in Dendrites Ch. 2 (eds. Stuart, G., Spruston, N. & Häusser, M.) 35–67 (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  6. Constantine-Paton, M. & Cline, H. T. LTP and activity-dependent synaptogenesis: the more alike they are, the more different they become. Curr. Opin. Neurobiol. 8, 139–148 (1998).

    Article  CAS  Google Scholar 

  7. Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  Google Scholar 

  8. Malenka, R. C. & Nicoll, R.A. Long-term potentiation—a decade of progress? Science 285, 1870–1874 (1999).

    Article  CAS  Google Scholar 

  9. Rabacchi, S., Bailly, Y., Delhaye-Bouchaud, N. & Mariani, J. Involvement of the N-methyl-d-aspartate (NMDA) receptor in synapse elimination during cerebellar development. Science 256, 1823–1825 (1992).

    Article  CAS  Google Scholar 

  10. Fox, K., Schlaggar, B. L., Glazewski, S. & O'Leary, D. D. M. Glutamate receptor blockade at cortical synapses disrupts development of thalamocortical and columnar organization in somatosensory cortex. Proc. Natl. Acad. Sci. USA 93, 5584–5589 (1996).

    Article  CAS  Google Scholar 

  11. Katz, L.C. What's critical for the critical period in visual cortex? Cell 99, 673–676 (1999).

    Article  CAS  Google Scholar 

  12. Liao, D., Zhang, X., O'Brien, R., Ehlers, M. D. & Huganir, R. L. Regulation of morphological postsynaptic synapses in developing hippocampal neurons. Nat. Neurosci. 2, 37–43 (1999).

    Article  CAS  Google Scholar 

  13. Gomperts, S. N., Carroll, R., Malenka, R. C. & Nicoll, R. A. Distinct roles for ionotropic and metabotropic glutamate receptors in the maturation of excitatory synapses. J. Neurosci. 20, 2229–2237 (2000).

    Article  CAS  Google Scholar 

  14. Friedmann, H. V., Bresler, T., Garner, C. C. & Ziv, N. E. Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 27, 57–69 (2000).

    Article  Google Scholar 

  15. Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999).

    Article  CAS  Google Scholar 

  16. Gähwiler, B. H., Thompson, S. M., McKinney, R. A., Debanne, D. & Robertson, R. T. in Culturing Nerve Cells 2nd edn. (eds. Banker, G. & Goslin, K.) 461–498 (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  17. Debanne, D., Gähwiler, B. H. & Thompson, S. M. Cooperative interactions in the induction of long-term potentiation and depression of synaptic excitation between CA3–CA1 cell pairs in vitro. Proc. Natl. Acad. Sci. USA 93, 11225–11230 (1996).

    Article  CAS  Google Scholar 

  18. Debanne, D., Gähwiler, B. H. & Thompson, S. M. Bidirectional associative plasticity of unitary CA3–CA1 EPSPs in the rat hippocampus in vitro. J. Neurophysiol. 77, 2851–2855 (1996).

    Article  Google Scholar 

  19. Hess, G., Kuhnt, U. & Voronin, L. L. Quantal analysis of paired-pulse facilitation in guinea pig hippocampal slices. Neurosci. Lett. 77, 187–192 (1987).

    Article  CAS  Google Scholar 

  20. Weisskopf, M. G. & Nicoll, R. A. Presynaptic changes during mossy fiber LTP revealed by NMDA receptor-mediated synaptic responses. Nature 376, 256–259 (1995).

    Article  CAS  Google Scholar 

  21. Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term plasticity. Nature 399, 66–70 (1999).

    Article  CAS  Google Scholar 

  22. McKinney, R.A., Capogna, M., Dürr, R., Gähwiler, B. H. & Thompson, S. M. Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat. Neurosci. 2, 44–49 (1999).

    Article  CAS  Google Scholar 

  23. Zou, D. J. & Cline, H. T. Postsynaptic calcium/calmodulin-dependent kinase II is required to limit elaboration of presynaptic and postsynaptic neuronal arbors. J. Neurosci. 15, 8909–8918 (1999).

    Article  Google Scholar 

  24. Rocha, M. & Sur, M. Rapid acquisition of dendritic spines by visual thalamic neurons after blockade of N-methyl-d-aspartate receptors. Proc. Natl. Acad. Sci. USA 92, 8026–8030 (1995).

    Article  CAS  Google Scholar 

  25. Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C. & Nelson, S. B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).

    Article  CAS  Google Scholar 

  26. Leinekugel, X., Medina, I., Khalilov, I., Ben-Ari, Y. & Khazipov, R. Calcium oscillations mediated by the synergistic excitatory actions of GABAA and NMDA receptors in the neonatal hippocampus. Neuron 18, 243–255 (1997).

    Article  CAS  Google Scholar 

  27. Garaschuk, O., Hanse, E. & Konnerth, A. Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. J. Physiol. (Lond.) 507, 219–236 (1998).

    Article  CAS  Google Scholar 

  28. Rohrbough, J. & Spitzer, N. C. Ca2+-permeable AMPA receptors and spontaneous presynaptic transmitter release at developing excitatory spinal synapses. J. Neurosci. 19, 8528–8541 (1999).

    Article  CAS  Google Scholar 

  29. Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287, 864–869 (2000).

    Article  CAS  Google Scholar 

  30. O'Brien, R. J. et al. Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron 23, 309–323 (1999).

  31. Takumi, Y., Ramirez-Leon, V., Laake, P., Rinvik, E. & Ottersen, O.P. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat. Neurosci. 2, 618–624 (1999).

    Article  CAS  Google Scholar 

  32. Ziv, N. E. & Smith, S. J. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91–102 (1996).

    Article  CAS  Google Scholar 

  33. Harris, K. M., Jensen, F. E. & Tsao, B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J. Neurosci. 12, 2685–2705 (1992).

    Article  CAS  Google Scholar 

  34. McKinney, R. A., Lüthi, A., Bandtlow, C. E., Gähwiler, B. H. & Thompson, S. M. Selective glutamate receptor antagonists can induce or prevent axonal sprouting in rat hippocampal slice cultures. Proc. Natl. Acad. Sci. USA 96, 11631–11636 (1999).

    Article  CAS  Google Scholar 

  35. Colonnese, M. T. & Constantine-Paton, M. Chronic NMDA receptor blockade from birth increases the sprouting capacity of ipsilateral retinocollicular axons without disrupting their early segregation. J. Neurosci. 21, 1557–1568 (2001).

    Article  CAS  Google Scholar 

  36. McKinney, R. A., Debanne, D., Gähwiler, B. H. & Thompson, S. M. Lesion-induced sprouting and hyperexcitability in the hippocampus in vitro: implications for the genesis of posttraumatic epilepsy. Nat. Med. 3, 990–996 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Heeb, L. Rietschin and R. Schöb for technical assistance and U. Gerber, P. Streit and M. Scanziani for discussions and for reading the manuscript. Supported by Norvatis Pharma Ltd., the Basque Government, and the Dr Eric Slack-Gyr and Swiss National Science (31-41829.94) Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Anne McKinney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lüthi, A., Schwyzer, L., Mateos, J. et al. NMDA receptor activation limits the number of synaptic connections during hippocampal development. Nat Neurosci 4, 1102–1107 (2001). https://doi.org/10.1038/nn744

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn744

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing