Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A non-circadian role for cAMP signaling and CREB activity in Drosophila rest homeostasis

Abstract

In the fruit fly, Drosophila melanogaster, rest shares features with mammalian sleep, including prolonged immobility, decreased sensory responsiveness and a homeostatic rebound after deprivation. To understand the molecular regulation of sleep-like rest, we investigated the involvement of a candidate gene, cAMP response-element binding protein (CREB). The duration of rest was inversely related to cAMP signaling and CREB activity. Acutely blocking CREB activity in transgenic flies did not affect the clock, but increased rest rebound. CREB mutants also had a prolonged and increased homeostatic rebound. In wild types, in vivo CREB activity increased after rest deprivation and remained elevated for a 72-hour recovery period. These data indicate that cAMP signaling has a non-circadian role in waking and rest homeostasis in Drosophila.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in cAMP signaling and CREB activity altered rest duration and not locomotion.
Figure 2: Increased and prolonged rest rebound responses after rest deprivation in flies with blocked CREB activity.
Figure 3: The change in rest is not effected through the clock.
Figure 4: Prolonged and increased rest rebound in flies with a mutation in the dCREB2 gene (S162).
Figure 5: CRE-dependent gene expression increased during and after rest deprivation.

Similar content being viewed by others

References

  1. Everson, C. A. & Toth, L. A. Systemic bacterial invasion induced by sleep deprivation. Am. J. Physiol. 278, R905–916 (2000).

    Article  CAS  Google Scholar 

  2. Jewett, M. E., Dijk, D. J., Kronauer, R. E. & Dinges, D. F. Dose–response relationship between sleep duration and human psychomotor vigilance and subjective alertness. Sleep 22, 171–179 (1999).

    Article  CAS  Google Scholar 

  3. Hendricks, J. C. et al. Rest in Drosophila is a sleep-like state. Neuron 25, 129–138 (2000).

    Article  CAS  Google Scholar 

  4. Shaw, P. J., Cirelli, C., Greenspan, R. J. & Tononi, G. Correlates of sleep and waking in Drosophila melanogaster. Science 287, 1834–1837 (2000).

    Article  CAS  Google Scholar 

  5. Rubin, G. M., Yandell, M. D. & Wortman, J. R. Comparative genomics of the eukaryotes. Science 287, 2204–2215 (2000).

    Article  CAS  Google Scholar 

  6. Belvin, M. P., Zhou, H. & Yin, J. C. P. The Drosophila dCREB2 gene affects the circadian clock. Neuron 22, 777–787 (1999).

    Article  CAS  Google Scholar 

  7. Obrietan, K., Impey, S., Smith, D., Athos, J. & Storm, D. R. Circadian regulation of cAMP response element-mediated gene expression in the suprachiasmatic nuclei. J. Biol. Chem. 274, 17748–11756 (1999).

    Article  CAS  Google Scholar 

  8. Cirelli, C., Pompeiano, M. & Tononi, G. Neuronal gene expression in the waking state: a role for the locus coeruleus. Science 274, 1211–1215 (1996).

    Article  CAS  Google Scholar 

  9. Zamboni, G., Perez, E., Amici, R., Jones, C. A. & Parmeggiani, P. L. Control of REM sleep: an aspect of the regulation of physiological homeostasis. Arch. Ital. Biol. 137, 249–262 (1999).

    CAS  PubMed  Google Scholar 

  10. Capece, M. L. & Lydic, R. cAMP and protein kinase A modulate cholinergic rapid eye movement sleep generation. Am. J. Physiol. 273, R1430–1440 (1997).

    CAS  PubMed  Google Scholar 

  11. Levine, J. D., Casey, C. L., Kalderon, D. D. & Jackson, F. R. Altered circadian pacemaker functions and cyclic AMP rhythms in the Drosophila learning mutant dunce. Neuron 13, 967–974 (1994).

    Article  CAS  Google Scholar 

  12. Dudai, Y., Uzzan, A. & Zvi, S. Abnormal activity of adenylate cyclase in the Drosophila memory mutant rutabaga. Neurosci. Lett. 42, 207–212 (1983).

    Article  CAS  Google Scholar 

  13. Yin, J. D. et al. A Drosophila CREB/CREM homolog encodes multiple isoforms, includng a cyclic AMP-dependent protein kinase-responsive transcriptional activator and antagonist. Mol. Cell. Biol. 15, 5123–5130 (1995).

    Article  CAS  Google Scholar 

  14. Yin, J. C. P. et al. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79, 49–58 (1994).

    Article  CAS  Google Scholar 

  15. Yin, J. C., Del Vecchio, M., Zhou, H. & Tully, T. CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81, 107–115 (1995).

    Article  CAS  Google Scholar 

  16. Habener, J. F., Miller, C. P. & Vallego, M. cAMP-dependent regulation of gene transcription by cAMP response element-binding protein and cAMP response element modulator. Vitam. Horm. 91, 1–56 (1995).

    Google Scholar 

  17. Duman, R. S. & Vaidya, V. A. Molecular and cellular actions of chronic electroconvulsive seizures. J. ECT 14, 181–193 (1998).

    Article  CAS  Google Scholar 

  18. Lelkes, Z., Alfoldi, P., Erdos, A. & Benedek, G. Rolipram, an antidepressant that increases the availability of cAMP, transiently enhances wakefulness in rats. Pharmacol. Biochem. Behav. 60, 835–839 (1998).

    Article  CAS  Google Scholar 

  19. Abel, T. et al. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampal-based long-term memory. Cell 8, 615–626 (1997).

    Article  Google Scholar 

  20. Davis, R. L. Physiology and biochemistry of Drosophila learning mutants. Physiol. Rev. 76, 299–317 (1996).

    Article  CAS  Google Scholar 

  21. Silva, A. J., Kogan, J. H., Frankland, P. W. & Kida, S. CREB and memory. Annu. Rev. Neurosci. 21, 127–148 (1998).

    Article  CAS  Google Scholar 

  22. Hendricks, J. C., Sehgal, A. & Pack, A. I. The need for a simple animal model to understand sleep. Prog. Neurobiol. 61, 339–351 (2000).

    Article  CAS  Google Scholar 

  23. Naylor, E. et al. The circadian Clock mutation alters sleep homeostasis in the mouse. J. Neurosci. 20, 8138–8143 (2000).

    Article  CAS  Google Scholar 

  24. Freeland, K., Liu, Y. Z. & Latchman, D. S. Distinct signaling pathways mediate the cAMP response element (CRE)-dependent activation of the calcitonin gene-related peptide gene promoter by cAMP and nerve growth factor. Biochem. J. 345, 233–238 (2000).

    Article  CAS  Google Scholar 

  25. Park, S. K., Sedore, S. A., Cronmiller, C. & Hirsh, J. Type II cAMP-dependent protein kinase-deficient Drosophila are viable but show developmental, circadian, and drug response phenotype. J. Biol. Chem. 275, 20588–20596 (2000).

    Article  CAS  Google Scholar 

  26. Eresh, S., Riese, J., Jackson, D. B., Bobmann, D. & Bienz, M. A CREB-binding site as a target for decapentaplegic signaling during Drosophila endoderm induction. EMBO J. 16, 2014–2022 (1997).

    Article  CAS  Google Scholar 

  27. Walton, M. R. & Dragunow, I. Is CREB a key to neuronal survival? Trends Neurosci. 23, 48–53 (2000).

    Article  CAS  Google Scholar 

  28. Nibuya, M., Nestler, E. J. & Duman, R. S. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J. Neurosci. 16, 2365–2372 (1996).

    Article  CAS  Google Scholar 

  29. Williams, J. A., Su, H. S., Bernards, A., Field, F. & Sehgal, A. A circadian output in Drosophila mediated by Neurofibromatosis-1 and Ras/MAPK. Science 293, 2251–2256 (2001).

    Article  CAS  Google Scholar 

  30. Kilduff, K. S. What rest in flies can tell us about sleep in mammals. Neuron 26, 295–298 (2000).

    Article  CAS  Google Scholar 

  31. Sehgal, A. et al. Rhythmic expression of timeless: a basis for promoting circadian cycles in period gene autoregulation. Science 270, 808–811 (1995).

    Article  CAS  Google Scholar 

  32. Plautz, J. D. et al. Quantitative analysis of Drosophila period gene transcription in living animals. J. Biol. Rhythms 12, 204–217 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants (R01-HL-59649, SCOR-HL-60287) from the National Institutes of Heart, Lung and Blood (J.C.H., J.C.-P.Y.) and the Howard Hughes Medical Institute (A.S.). We thank J. Cater for biostatistical assistance and A.I. Pack for advice and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry C.-P. Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendricks, J., Williams, J., Panckeri, K. et al. A non-circadian role for cAMP signaling and CREB activity in Drosophila rest homeostasis. Nat Neurosci 4, 1108–1115 (2001). https://doi.org/10.1038/nn743

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn743

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing