Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses

Abstract

Intrinsic antioxidant defenses are important for neuronal longevity. We found that in rat neurons, synaptic activity, acting via NMDA receptor (NMDAR) signaling, boosted antioxidant defenses by making changes to the thioredoxin-peroxiredoxin (Prx) system. Synaptic activity enhanced thioredoxin activity, facilitated the reduction of overoxidized Prxs and promoted resistance to oxidative stress. Resistance was mediated by coordinated transcriptional changes; synaptic NMDAR activity inactivated a previously unknown Forkhead box O target gene, the thioredoxin inhibitor Txnip. Conversely, NMDAR blockade upregulated Txnip in vivo and in vitro, where it bound thioredoxin and promoted vulnerability to oxidative damage. Synaptic activity also upregulated the Prx reactivating genes Sesn2 (sestrin 2) and Srxn1 (sulfiredoxin), via C/EBPβ and AP-1, respectively. Mimicking these expression changes was sufficient to strengthen antioxidant defenses. Trans-synaptic stimulation of synaptic NMDARs was crucial for boosting antioxidant defenses; chronic bath activation of all (synaptic and extrasynaptic) NMDARs induced no antioxidative effects. Thus, synaptic NMDAR activity may influence the progression of pathological processes associated with oxidative damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synaptic NMDAR activity promotes resistance to oxidative insults and prevents ROS accumulation.
Figure 2: Synaptic activity prevents the overoxidation of Prxs in response to an oxidative insult and negatively regulates the thioredoxin inhibitor Txnip.
Figure 3: Txnip and thioredoxin can regulate neuronal vulnerability to oxidative stress.
Figure 4: Synaptic activity promotes reduction of Prx-SO2/3H and induces neuroprotective expression of the Prx-SO2/3H–reducing genes Sesn2 and Srxn1.
Figure 5: Txnip is a FOXO target gene.
Figure 6: Sesn2 is a C/EBP target gene and Srxn1 is an AP-1 target gene.
Figure 7: Extrasynaptic NMDARs do not promote antioxidative effects.
Figure 8: Memantine, but not NR2B antagonists, discriminates between pro-survival and pro-death NMDAR signaling.
Figure 9: An ischemic episode, followed by reperfusion, induces overoxidation of Prxs.

Similar content being viewed by others

References

  1. Mariani, E., Polidori, M.C., Cherubini, A. & Mecocci, P. Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 827, 65–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Halliwell, B. Oxidative stress and neurodegeneration: where are we now? J. Neurochem. 97, 1634–1658 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Yoshida, T., Nakamura, H., Masutani, H. & Yodoi, J. The involvement of thioredoxin and thioredoxin binding protein-2 on cellular proliferation and aging process. Ann. NY Acad. Sci. 1055, 1–12 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Hattori, F., Murayama, N., Noshita, T. & Oikawa, S. Mitochondrial peroxiredoxin-3 protects hippocampal neurons from excitotoxic injury in vivo. J. Neurochem. 86, 860–868 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Sanchez-Font, M.F. et al. Peroxiredoxin 2 (PRDX2), an antioxidant enzyme, is under-expressed in Down syndrome fetal brains. Cell. Mol. Life Sci. 60, 1513–1523 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Qu, D. et al. Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson's disease. Neuron 55, 37–52 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Wood, Z.A., Schroder, E., Robin Harris, J. & Poole, L.B. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28, 32–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Rhee, S.G., Jeong, W., Chang, T.S. & Woo, H.A. Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance. Kidney Int. Suppl. 72, S3–S8 (2007).

    Article  Google Scholar 

  9. Budanov, A.V., Sablina, A.A., Feinstein, E., Koonin, E.V. & Chumakov, P.M. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304, 596–600 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Mennerick, S. & Zorumski, C.F. Neural activity and survival in the developing nervous system. Mol. Neurobiol. 22, 41–54 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Olney, J.W. et al. Drug-induced apoptotic neurodegeneration in the developing brain. Brain Pathol. 12, 488–498 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Papadia, S. & Hardingham, G.E. The dichotomy of NMDA receptor signaling. Neuroscientist. 13, 572–579 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ikonomidou, C. et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283, 70–74 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Tashiro, A., Sandler, V.M., Toni, N., Zhao, C. & Gage, F.H. NMDA receptor–mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature 442, 929–933 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Ikonomidou, C., Stefovska, V. & Turski, L. Neuronal death enhanced by N-methyl-D-aspartate antagonists. Proc. Natl. Acad. Sci. USA 97, 12885–12890 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nakayama, K., Kiyosue, K. & Taguchi, T. Diminished neuronal activity increases neuron-neuron connectivity underlying silent synapse formation and the rapid conversion of silent to functional synapses. J. Neurosci. 25, 4040–4051 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hardingham, G.E., Fukunaga, Y. & Bading, H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci. 5, 405–414 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Papadia, S., Stevenson, P., Hardingham, N.R., Bading, H. & Hardingham, G.E. Nuclear Ca2+ and the cAMP response element-binding protein family mediate a late phase of activity-dependent neuroprotection. J. Neurosci. 25, 4279–4287 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jin, M.H. et al. Characterization of neural cell types expressing peroxiredoxins in mouse brain. Neurosci. Lett. 381, 252–257 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Schulze, P.C. et al. Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J. Biol. Chem. 279, 30369–30374 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Adams, S.M., de Rivero Vaccari, J.C. & Corriveau, R.A. Pronounced cell death in the absence of NMDA receptors in the developing somatosensory thalamus. J. Neurosci. 24, 9441–9450 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chang, T.S. et al. Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J. Biol. Chem. 279, 50994–51001 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Woo, H.A. et al. Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins. J. Biol. Chem. 280, 3125–3128 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Nakae, J., Barr, V. & Accili, D. Differential regulation of gene expression by insulin and IGF-1 receptors correlates with phosphorylation of a single amino acid residue in the forkhead transcription factor FKHR. EMBO J. 19, 989–996 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Olive, M., Williams, S.C., Dezan, C., Johnson, P.F. & Vinson, C. Design of a C/EBP-specific, dominant-negative bZIP protein with both inhibitory and gain-of-function properties. J. Biol. Chem. 271, 2040–2047 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Niehof, M., Manns, M.P. & Trautwein, C. CREB controls LAP/C/EBPβ transcription. Mol. Cell. Biol. 17, 3600–3613 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, S.J. et al. Decoding NMDA receptor signaling: identification of genomic programs specifying neuronal survival and death. Neuron 53, 549–562 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Soriano, F.X. et al. Preconditioning doses of NMDA promote neuroprotection by enhancing neuronal excitability. J. Neurosci. 26, 4509–4518 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Steigerwald, F. et al. C-terminal truncation of NR2A subunits impairs synaptic, but not extrasynaptic localization of NMDA receptors. J. Neurosci. 20, 4573–4581 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, Y. et al. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J. Neurosci. 27, 2846–2857 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tovar, K.R. & Westbrook, G.L. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J. Neurosci. 19, 4180–4188 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, H.S. & Lipton, S.A. The chemical biology of clinically tolerated NMDA receptor antagonists. J. Neurochem. 97, 1611–1626 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Seif el Nasr, M., Peruche, B., Rossberg, C., Mennel, H.D. & Krieglstein, J. Neuroprotective effect of memantine demonstrated in vivo and in vitro. Eur. J. Pharmacol. 185, 19–24 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Wesemann, W., Schollmeyer, J.D. & Sturm, G. Distribution of memantine in brain, liver and blood of the rat. Arzneimittelforschung 32, 1243–1245 (1982).

    CAS  PubMed  Google Scholar 

  36. Minn, A.H., Hafele, C. & Shalev, A. Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces β-cell apoptosis. Endocrinology 146, 2397–2405 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Gilley, J., Coffer, P.J. & Ham, J. FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J. Cell Biol. 162, 613–622 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yao, J. et al. Interaction of amyloid binding alcohol dehydrogenase/Aβ mediates up-regulation of peroxiredoxin II in the brains of Alzheimer's disease patients and a transgenic Alzheimer's disease mouse model. Mol. Cell. Neurosci. 35, 377–382 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Boulos, S., Meloni, B.P., Arthur, P.G., Bojarski, C. & Knuckey, N.W. Peroxiredoxin 2 overexpression protects cortical neuronal cultures from ischemic and oxidative injury, but not glutamate excitotoxicity, whereas Cu/Zn superoxide dismutase 1 overexpression protects only against oxidative injury. J. Neurosci. Res. 85, 3089–3097 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Peskin, A.V. et al. The high reactivity peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents. J. Biol. Chem. 282, 11885–11892 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Ogusucu, R., Rettori, D., Munhoz, D.C., Netto, L.E. & Augusto, O. Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics. Free Radic. Biol. Med. 42, 326–334 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Fang, J., Nakamura, T., Cho, D.H., Gu, Z. & Lipton, S.A. S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson's disease. Proc. Natl. Acad. Sci. USA 104, 18742–18747 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Biteau, B., Labarre, J. & Toledano, M.B. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425, 980–984 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Kapinya, K., Penzel, R., Sommer, C. & Kiessling, M. Temporary changes of the AP-1 transcription factor binding activity in the gerbil hippocampus after transient global ischemia and ischemic tolerance induction. Brain Res. 872, 282–293 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Young, D., Lawlor, P.A., Leone, P., Dragunow, M. & During, M.J. Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nat. Med. 5, 448–453 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Spires, T.L. & Hannan, A.J. Nature, nurture and neurology: gene-environment interactions in neurodegenerative disease. FEBS Anniversary Prize Lecture delivered on 27 June 2004 at the 29th FEBS Congress in Warsaw. FEBS J. 272, 2347–2361 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Muir, K.W. Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr. Opin. Pharmacol. 6, 53–60 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Blalock, E.M. et al. Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc. Natl. Acad. Sci. USA 101, 2173–2178 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu, T. et al. Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Osada, S., Yamamoto, H., Nishihara, T. & Imagawa, M. DNA binding specificity of the CCAAT/enhancer–binding protein transcription factor family. J. Biol. Chem. 271, 3891–3896 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Brophy for critically reading the manuscript and acknowledge J. Stuwe's assistance. We also thank D. Bennett and the Rush Alzheimer's Disease Center (US National Institutes of Health grant P30AG10161) for providing some of the brain samples used in this study and thank D. Accili, H. Bading, J.-C. Chambard, R. Lee, C. Vinson, G. Wilding and J. Yodoi for plasmids. This work was funded by the Wellcome Trust, a Royal Society University Research Fellowship (G.E.H.), Medical Research Scotland, Tenovus Scotland, the Biotechnology and Biological Sciences Research Council, Sanitaetsrat Dr. Emil Alexander Huebner and Gemahlin-Stiftung, a Rahel Hirsch scholarship from the Humboldt University Berlin, and the Network of European Neuroscience Institutes.

Author information

Authors and Affiliations

Authors

Contributions

S.P., F.X.S. and F.L. performed in vitro experiments and analysis of some in vivo–derived samples. M.-A.M. performed electrophysiological experiments. K.A.D. analyzed human samples in experiments designed by B.A.Y. H.H.H., M.S., V.S. and R.C. prepared in vivo samples. G.M. created the Txnip-luciferase construct. A.K. performed the two-dimensional carbonyl assays. J.F. and K.H. performed MCA occlusion experiments. M.C. performed the microarray expression analysis under direction from P.G. D.J.A.W. directed and assisted in the design of the electrophysiological experiments and had critical input into the manuscript preparation and project design. C.I. directed and designed in vivo experiments and had critical input into the manuscript preparation. G.E.H. performed some in vitro experiments, conceived and directed the project, and wrote the manuscript.

Corresponding author

Correspondence to Giles E Hardingham.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Tables 1 and 2, and Methods (PDF 1016 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papadia, S., Soriano, F., Léveillé, F. et al. Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci 11, 476–487 (2008). https://doi.org/10.1038/nn2071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2071

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing