Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Retrograde regulation of motoneuron differentiation by muscle β-catenin

Abstract

Synapse formation requires proper interaction between pre- and postsynaptic cells. In anterograde signaling, neurons release factors to guide postsynaptic differentiation. However, less is known about how postsynaptic targets retrogradely regulate presynaptic differentiation or function. We found that muscle-specific conditional knockout of β-catenin (Ctnnb1, also known as β-cat) in mice caused both morphologic and functional defects in motoneuron terminals of neuromuscular junctions (NMJs). In the absence of muscle β-catenin, acetylcholine receptor clusters were increased in size and distributed throughout a wider region. Primary nerve branches were mislocated, whereas secondary or intramuscular nerve branches were elongated and reduced in number. Both spontaneous and evoked neurotransmitter release was reduced at the mutant NMJs. Furthermore, short-term plasticity and calcium sensitivity of neurotransmitter release were compromised in β-catenin–deficient muscle. In contrast, the NMJ was normal in morphology and function in motoneuron-specific β-catenin–deficient mice. Taken together, these observations indicate a role for muscle β-catenin in presynaptic differentiation and function, identifying a previously unknown retrograde signaling in the synapse formation and synaptic plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phrenic nerve branch mislocation and enlarged central band of AChR clusters in HSA–β-cat−/− mice.
Figure 2: Characterization of postsynaptic differentiation in HSA–β-cat−/− mice.
Figure 3: Defective spontaneous ACh release in HSA–β-cat−/− NMJs.
Figure 4: Responsiveness of muscle fibers to exogenous cholinergic agonist CCh.
Figure 5: Impaired evoked ACh release in HSA–β-cat−/− NMJs.
Figure 6: Compromised short-term plasticity and calcium sensitivity in HSA–β-cat−/− NMJs.

Similar content being viewed by others

References

  1. Kalinovsky, A. & Scheiffele, P. Transcriptional control of synaptic differentiation by retrograde signals. Curr. Opin. Neurobiol. 14, 272–279 (2004).

    Article  CAS  Google Scholar 

  2. Markus, A., Patel, T.D. & Snider, W.D. Neurotrophic factors and axonal growth. Curr. Opin. Neurobiol. 12, 523–531 (2002).

    Article  CAS  Google Scholar 

  3. Sudhof, T.C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547 (2004).

    Article  Google Scholar 

  4. Waites, C.L., Craig, A.M. & Garner, C.C. Mechanisms of vertebrate synaptogenesis. Annu. Rev. Neurosci. 28, 251–274 (2005).

    Article  CAS  Google Scholar 

  5. Sanes, J.R. & Lichtman, J.W. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 389–442 (1999).

    Article  CAS  Google Scholar 

  6. McMahan, U.J. et al. Agrin isoforms and their role in synaptogenesis. Curr. Opin. Cell Biol. 4, 869–874 (1992).

    Article  CAS  Google Scholar 

  7. Gautam, M. et al. Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85, 525–535 (1996).

    Article  CAS  Google Scholar 

  8. Xiong, W.C. & Mei, L. An unconventional role of neurotransmission in synapse formation. Neuron 46, 521–523 (2005).

    Article  CAS  Google Scholar 

  9. Brandon, E.P. et al. Aberrant patterning of neuromuscular synapses in choline acetyltransferase–deficient mice. J. Neurosci. 23, 539–549 (2003).

    Article  CAS  Google Scholar 

  10. Misgeld, T. et al. Roles of neurotransmitter in synapse formation: development of neuromuscular junctions lacking choline acetyltransferase. Neuron 36, 635–648 (2002).

    Article  CAS  Google Scholar 

  11. Schaeffer, L., de Kerchove d'Exaerde, A. & Changeux, J.P. Targeting transcription to the neuromuscular synapse. Neuron 31, 15–22 (2001).

    Article  CAS  Google Scholar 

  12. Hamburger, V. Trophic interactions in neurogenesis: a personal historical account. Annu. Rev. Neurosci. 3, 269–278 (1980).

    Article  CAS  Google Scholar 

  13. Ciani, L. & Salinas, P.C. WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat. Rev. Neurosci. 6, 351–362 (2005).

    Article  CAS  Google Scholar 

  14. Hall, A.C., Lucas, F.R. & Salinas, P.C. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100, 525–535 (2000).

    Article  CAS  Google Scholar 

  15. Mathew, D. et al. Wingless signaling at synapses is through cleavage and nuclear import of receptor DFrizzled2. Science 310, 1344–1347 (2005).

    Article  CAS  Google Scholar 

  16. Packard, M. et al. The Drosophila Wnt, wingless, provides an essential signal for pre- and postsynaptic differentiation. Cell 111, 319–330 (2002).

    Article  CAS  Google Scholar 

  17. Luo, Z.G. et al. Regulation of AChR clustering by Dishevelled interacting with MuSK and PAK1. Neuron 35, 489–505 (2002).

    Article  CAS  Google Scholar 

  18. Wang, Z.Z. et al. Aberrant development of motor axons and neuromuscular synapses in MyoD-null mice. J. Neurosci. 23, 5161–5169 (2003).

    Article  CAS  Google Scholar 

  19. Cadigan, K.M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997).

    Article  CAS  Google Scholar 

  20. Haegel, H. et al. Lack of β-catenin affects mouse development at gastrulation. Development 121, 3529–3537 (1995).

    CAS  PubMed  Google Scholar 

  21. Brault, V. et al. Inactivation of the β-catenin gene by Wnt1-Cre–mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128, 1253–1264 (2001).

    CAS  PubMed  Google Scholar 

  22. Miniou, P. et al. Gene targeting restricted to mouse striated muscle lineage. Nucleic Acids Res. 27, e27 (1999).

    Article  CAS  Google Scholar 

  23. Schwander, M. et al. β1 integrins regulate myoblast fusion and sarcomere assembly. Dev. Cell 4, 673–685 (2003).

    Article  CAS  Google Scholar 

  24. Mao, X., Fujiwara, Y. & Orkin, S.H. Improved reporter strain for monitoring Cre recombinase–mediated DNA excisions in mice. Proc. Natl. Acad. Sci. USA 96, 5037–5042 (1999).

    Article  CAS  Google Scholar 

  25. Gautam, M. et al. Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice. Nature 377, 232–236 (1995).

    Article  CAS  Google Scholar 

  26. Zhang, B. et al. β-catenin regulates acetylcholine receptor clustering in muscle cells through interaction with rapsyn. J. Neurosci. 27, 3968–3973 (2007).

    Article  CAS  Google Scholar 

  27. Lin, W. et al. Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410, 1057–1064 (2001).

    Article  CAS  Google Scholar 

  28. Yang, X. et al. Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 30, 399–410 (2001).

    Article  CAS  Google Scholar 

  29. Fu, A.K. et al. Aberrant motor axon projection, acetylcholine receptor clustering and neurotransmission in cyclin-dependent kinase 5 null mice. Proc. Natl. Acad. Sci. USA 102, 15224–15229 (2005).

    Article  CAS  Google Scholar 

  30. Drees, F., Pokutta, S., Yamada, S., Nelson, W.J. & Weis, W.I. α-catenin is a molecular switch that binds E-cadherin–β-catenin and regulates actin-filament assembly. Cell 123, 903–915 (2005).

    Article  CAS  Google Scholar 

  31. Murase, S., Mosser, E. & Schuman, E.M. Depolarization drives β-catenin into neuronal spines promoting changes in synaptic structure and function. Neuron 35, 91–105 (2002).

    Article  CAS  Google Scholar 

  32. Bamji, S.X. et al. Role of β-catenin in synaptic vesicle localization and presynaptic assembly. Neuron 40, 719–731 (2003).

    Article  CAS  Google Scholar 

  33. Arber, S. et al. Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23, 659–674 (1999).

    Article  CAS  Google Scholar 

  34. Thaler, J. et al. Active suppression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9. Neuron 23, 675–687 (1999).

    Article  CAS  Google Scholar 

  35. Huang, E.J. & Reichardt, L.F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736 (2001).

    Article  CAS  Google Scholar 

  36. Tao, H.W. & Poo, M. Retrograde signaling at central synapses. Proc. Natl. Acad. Sci. USA 98, 11009–11015 (2001).

    Article  CAS  Google Scholar 

  37. Prakash, S., Caldwell, J.C., Eberl, D.F. & Clandinin, T.R. Drosophila N-cadherin mediates an attractive interaction between photoreceptor axons and their targets. Nat. Neurosci. 8, 443–450 (2005).

    Article  CAS  Google Scholar 

  38. Jontes, J.D., Emond, M.R. & Smith, S.J. In vivo trafficking and targeting of N-cadherin to nascent presynaptic terminals. J. Neurosci. 24, 9027–9034 (2004).

    Article  CAS  Google Scholar 

  39. Togashi, H. et al. Cadherin regulates dendritic spine morphogenesis. Neuron 35, 77–89 (2002).

    Article  CAS  Google Scholar 

  40. Bozdagi, O., Valcin, M., Poskanzer, K., Tanaka, H. & Benson, D.L. Temporally distinct demands for classic cadherins in synapse formation and maturation. Mol. Cell. Neurosci. 27, 509–521 (2004).

    Article  CAS  Google Scholar 

  41. Iwai, Y. et al. DN-cadherin is required for spatial arrangement of nerve terminals and ultrastructural organization of synapses. Mol. Cell. Neurosci. 19, 375–388 (2002).

    Article  CAS  Google Scholar 

  42. Nuriya, M. & Huganir, R.L. Regulation of AMPA receptor trafficking by N-cadherin. J. Neurochem. 97, 652–661 (2006).

    Article  CAS  Google Scholar 

  43. Lohof, A.M., Ip, N.Y. & Poo, M.M. Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature 363, 350–353 (1993).

    Article  CAS  Google Scholar 

  44. Nguyen, Q.T., Parsadanian, A.S., Snider, W.D. & Lichtman, J.W. Hyperinnervation of neuromuscular junctions caused by GDNF overexpression in muscle. Science 279, 1725–1729 (1998).

    Article  CAS  Google Scholar 

  45. Wang, T., Xie, K. & Lu, B. Neurotrophins promote maturation of developing neuromuscular synapses. J. Neurosci. 15, 4796–4805 (1995).

    Article  CAS  Google Scholar 

  46. Bernstein, M. & Lichtman, J.W. Axonal atrophy: the retraction reaction. Curr. Opin. Neurobiol. 9, 364–370 (1999).

    Article  CAS  Google Scholar 

  47. Koenen, M., Peter, C., Villarroel, A., Witzemann, V. & Sakmann, B. Acetylcholine receptor channel subtype directs the innervation pattern of skeletal muscle. EMBO Rep. 6, 570–576 (2005).

    Article  CAS  Google Scholar 

  48. Lin, W. et al. Neurotransmitter acetylcholine negatively regulates neuromuscular synapse formation by a Cdk5-dependent mechanism. Neuron 46, 569–579 (2005).

    Article  CAS  Google Scholar 

  49. Dong, X.P. et al. Shp2 is dispensable in the formation and maintenance of the neuromuscular junction. Neurosignals 15, 53–63 (2006).

    Article  CAS  Google Scholar 

  50. McLachlan, E.M. & Martin, A.R. Non-linear summation of end-plate potentials in the frog and mouse. J. Physiol. (Lond.) 311, 307–324 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Melki and S. Arber for valuable mouse lines. This work was supported in part by grants from the US National Institutes of Health and the Muscular Dystrophy Association to L.M. and W.-C.X., National Natural Science Foundation of China (U0632007) and Program of Changjian Scholars and Innovative Research Team in University (IRT0731) to T.-M.G. T.-M.G. and L.M. are Chang Jiang Scholars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Mei.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Methods (PDF 682 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XM., Dong, XP., Luo, SW. et al. Retrograde regulation of motoneuron differentiation by muscle β-catenin. Nat Neurosci 11, 262–268 (2008). https://doi.org/10.1038/nn2053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2053

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing