Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration

Abstract

Expansion of the polyglutamine (polyQ) tract in human TATA-box binding protein (TBP) causes the neurodegenerative disease spinocerebellar ataxia 17 (SCA17). It remains unclear how the polyQ tract regulates normal protein function and induces selective neuropathology in SCA17. We generated transgenic mice expressing polyQ-expanded TBP. These mice showed weight loss, progressive neurological symptoms and neurodegeneration before early death. Expanded polyQ tracts reduced TBP dimerization but enhanced the interaction of TBP with the general transcription factor IIB (TFIIB). In SCA17 transgenic mice, the small heat shock protein HSPB1, a potent neuroprotective factor, was downregulated, and TFIIB occupancy of the Hspb1 promoter was decreased. Overexpression of HSPB1 or TFIIB alleviated mutant TBP-induced neuritic defects. These findings implicate the polyQ domain of TBP in transcriptional regulation and provide insight into the molecular pathogenesis of SCA17.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of mutant TBPs in cultured cells and transgenic mice.
Figure 2: Neuronal distribution of mutant TBP in transgenic SCA17 mice.
Figure 3: Neurological phenotype of transgenic SCA17 mice.
Figure 4: Neurodegeneration in transgenic SCA17 mice.
Figure 5: Influence of polyQ tract length on TBP dimerization.
Figure 6: Effect of polyQ-expanded TBP on gene transcription.
Figure 7: Aberrant interaction of mutant TBP with TFIIB.
Figure 8: Overexpression of HSPB1 suppressed mutant TBP-induced neuritic defects.

Similar content being viewed by others

References

  1. Courey, A.J. & Tjian, R. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55, 887–898 (1988).

    Article  CAS  Google Scholar 

  2. Gerber, H.P. et al. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 263, 808–811 (1994).

    Article  CAS  Google Scholar 

  3. Lee, T.I. & Young, R.A. Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet. 34, 77–137 (2000).

    Article  CAS  Google Scholar 

  4. Bondareva, A.A. & Schmidt, E.E. Early vertebrate evolution of the TATA-binding protein, TBP. Mol. Biol. Evol. 20, 1932–1939 (2003).

    Article  CAS  Google Scholar 

  5. Bruni, A.C. et al. Behavioral disorder, dementia, ataxia, and rigidity in a large family with TATA box-binding protein mutation. Arch. Neurol. 61, 1314–1320 (2004).

    Article  Google Scholar 

  6. Koide, R. et al. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum. Mol. Genet. 8, 2047–2053 (1999).

    Article  CAS  Google Scholar 

  7. Nakamura, K. et al. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum. Mol. Genet. 10, 1441–1448 (2001).

    Article  CAS  Google Scholar 

  8. Rolfs, A. et al. Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann. Neurol. 54, 367–375 (2003).

    Article  Google Scholar 

  9. Toyoshima, Y. et al. SCA17 homozygote showing Huntington's disease-like phenotype. Ann. Neurol. 55, 281–286 (2004).

    Article  CAS  Google Scholar 

  10. Bauer, P. et al. Trinucleotide repeat expansion in SCA17/TBP in white patients with Huntington's disease-like phenotype. J. Med. Genet. 41, 230–232 (2004).

    Article  CAS  Google Scholar 

  11. Zoghbi, H.Y. & Orr, H.T. Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci. 23, 217–247 (2000).

    Article  CAS  Google Scholar 

  12. Riley, B.E. & Orr, H.T. Polyglutamine neurodegenerative diseases and regulation of transcription: assembling the puzzle. Genes Dev. 20, 2183–2192 (2006).

    Article  CAS  Google Scholar 

  13. Burley, S.K. & Roeder, R.G. Biochemistry and structural biology of transcription factor IID (TFIID). Annu. Rev. Biochem. 65, 769–799 (1996).

    Article  CAS  Google Scholar 

  14. Schilling, G. et al. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum. Mol. Genet. 8, 397–407 (1999).

    Article  CAS  Google Scholar 

  15. La Spada, A.R. et al. Polyglutamine-expanded ataxin-7 antagonizes CRX function and induces cone-rod dystrophy in a mouse model of SCA7. Neuron 31, 913–927 (2001).

    Article  CAS  Google Scholar 

  16. Fujigasaki, H. et al. CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia. Brain 124, 1939–1947 (2001).

    Article  CAS  Google Scholar 

  17. Jackson-Fisher, A.J., Chitikila, C., Mitra, M. & Pugh, B.F. A role for TBP dimerization in preventing unregulated gene expression. Mol. Cell 3, 717–727 (1999).

    Article  CAS  Google Scholar 

  18. Schmidt, E.E., Bondareva, A.A., Radke, J.R. & Capecchi, M.R. Fundamental cellular processes do not require vertebrate-specific sequences within the TATA-binding protein. J. Biol. Chem. 278, 6168–6174 (2003).

    Article  CAS  Google Scholar 

  19. Evgrafov, O.V. et al. Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat. Genet. 36, 602–606 (2004).

    Article  CAS  Google Scholar 

  20. Williams, K.L., Rahimtula, M. & Mearow, K.M. Hsp27 and axonal growth in adult sensory neurons in vitro. BMC Neurosci. [online] 6, 24 (2005).

    Article  Google Scholar 

  21. Akbar, M.T. et al. The neuroprotective effects of heat shock protein 27 overexpression in transgenic animals against kainate-induced seizures and hippocampal cell death. J. Biol. Chem. 278, 19956–19965 (2003).

    Article  CAS  Google Scholar 

  22. Sharp, P. et al. Heat shock protein 27 rescues motor neurons following nerve injury and preserves muscle function. Exp. Neurol. 198, 511–518 (2006).

    Article  CAS  Google Scholar 

  23. Lasek, K. et al. Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain 129, 2341–2352 (2006).

    Article  CAS  Google Scholar 

  24. Maltecca, F. et al. Intergenerational instability and marked anticipation in SCA-17. Neurology 61, 1441–1443 (2003).

    Article  CAS  Google Scholar 

  25. Mittal, V. & Hernandez, N. Role for the amino-terminal region of human TBP in U6 snRNA transcription. Science 275, 1136–1140 (1997).

    Article  CAS  Google Scholar 

  26. Seipel, K., Georgiev, O., Gerber, H.P. & Schaffner, W. Basal components of the transcription apparatus (RNA polymerase II, TATA-binding protein) contain activation domains: is the repetitive C-terminal domain (CTD) of RNA polymerase II a “portable enhancer domain”? Mol. Reprod. Dev. 39, 215–225 (1994).

    Article  CAS  Google Scholar 

  27. Lee, M. & Struhl, K. A severely defective TATA-binding protein-TFIIB interaction does not preclude transcriptional activation in vivo. Mol. Cell. Biol. 17, 1336–1345 (1997).

    Article  CAS  Google Scholar 

  28. Tansey, W.P. & Herr, W. Selective use of TBP and TFIIB revealed by a TATA-TBP-TFIIB array with altered specificity. Science 275, 829–831 (1997).

    Article  CAS  Google Scholar 

  29. Butler, R. & Bates, G.P. Histone deacetylase inhibitors as therapeutics for polyglutamine disorders. Nat. Rev. Neurosci. 7, 784–796 (2006).

    Article  CAS  Google Scholar 

  30. Arrasate, M., Mitra, S., Schweitzer, E.S., Segal, M.R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2004).

    Article  CAS  Google Scholar 

  31. Lam, Y.C. et al. ATAXIN-1 interacts with the repressor capicua in its native complex to cause SCA1 neuropathology. Cell 127, 1335–1347 (2006).

    Article  CAS  Google Scholar 

  32. Gatchel, J.R. & Zoghbi, H.Y. Diseases of unstable repeat expansion: mechanisms and common principles. Nat. Rev. Genet. 6, 743–755 (2005).

    Article  CAS  Google Scholar 

  33. Roeder, R.G. Transcriptional regulation and the role of diverse coactivators in animal cells. FEBS Lett. 579, 909–915 (2005).

    Article  CAS  Google Scholar 

  34. Gaestel, M., Gotthardt, R. & Muller, T. Structure and organisation of a murine gene encoding small heat-shock protein Hsp25. Gene 128, 279–283 (1993).

    Article  CAS  Google Scholar 

  35. Williams, K.L., Rahimtula, M. & Mearow, K.M. Heat shock protein 27 is involved in neurite extension and branching of dorsal root ganglion neurons in vitro. J. Neurosci. Res. 84, 716–723 (2006).

    Article  CAS  Google Scholar 

  36. Chang, W.H. et al. Dynamic expression of Hsp27 in the presence of mutant ataxin-3. Biochem. Biophys. Res. Commun. 336, 258–267 (2005).

    Article  CAS  Google Scholar 

  37. Tsai, H.F., Lin, S.J., Li, C. & Hsieh, M. Decreased expression of Hsp27 and Hsp70 in transformed lymphoblastoid cells from patients with spinocerebellar ataxia type 7. Biochem. Biophys. Res. Commun. 334, 1279–1286 (2005).

    Article  CAS  Google Scholar 

  38. Wyttenbach, A. et al. Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum. Mol. Genet. 11, 1137–1151 (2002).

    Article  CAS  Google Scholar 

  39. Armstrong, C.L. et al. Constitutive expression of heat shock protein HSP25 in the central nervous system of the developing and adult mouse. J. Comp. Neurol. 434, 262–274 (2001).

    Article  CAS  Google Scholar 

  40. Dierick, I., Irobi, J., De Jonghe, P. & Timmerman, V. Small heat shock proteins in inherited peripheral neuropathies. Ann. Med. 37, 413–422 (2005).

    Article  CAS  Google Scholar 

  41. Li, H., Li, S.H., Yu, Z.X., Shelbourne, P. & Li, X.J. Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. J. Neurosci. 21, 8473–8481 (2001).

    Article  CAS  Google Scholar 

  42. Parker, J.A. et al. Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death. Proc. Natl. Acad. Sci. USA 98, 13318–13323 (2001).

    Article  CAS  Google Scholar 

  43. Michalik, A., Kazantsev, A. & Van Broeckhoven, C. Method to introduce stable, expanded, polyglutamine-encoding CAG/CAA trinucleotide repeats into CAG repeat-containing genes. Biotechniques 31, 250-252–254 (2001).

    Article  Google Scholar 

  44. Taggart, A.K. & Pugh, B.F. Dimerization of TFIID when not bound to DNA. Science 272, 1331–1333 (1996).

    Article  CAS  Google Scholar 

  45. Li, S.H. et al. Interaction of Huntington disease protein with transcriptional activator Sp1. Mol. Cell. Biol. 22, 1277–1287 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C.-E. Wang and H.H. Nguyen for technical assistance, K. Smith for instruction on chromatin immunoprecipitation, A.R. La Spada (University of Washington Medical Center) and D.R. Borchelt (University of Florida College of Medicine) for the prion promoter plasmid, and A. Michalik (University of Antwerp) for the CAA/CAG repeat oligonucleotide. This work was supported by US National Institutes of Health grants (NS045016, NS41669, AG19206, NS36232).

Author information

Authors and Affiliations

Authors

Contributions

M.J.F. characterized transgenic mice, examined transgene expression as well as biochemical, transcriptional, and pathological changes in animal and cell models, and wrote the manuscript; A.G.S. characterized stably transfected PC12 cells; Z.-H.F. performed immunohistochemical and electron microscopic studies; E.G.W. and S.T.W. conducted and analyzed microarray experiments; S.H.L. and X.-J.L. established transgenic mice and stably transfected cell lines, supervised the project, analyzed data and wrote the manuscript.

Corresponding authors

Correspondence to Shihua Li or Xiao-Jiang Li.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Tables 1 and 2, and Methods (PDF 2568 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, M., Shah, A., Fang, ZH. et al. Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration. Nat Neurosci 10, 1519–1528 (2007). https://doi.org/10.1038/nn2011

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2011

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing