Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons

Abstract

Dopamine-depleting lesions of the striatum that mimic Parkinson's disease induce a profound pruning of spines and glutamatergic synapses in striatopallidal medium spiny neurons, leaving striatonigral medium spiny neurons intact. The mechanisms that underlie this cell type–specific loss of connectivity are poorly understood. The Kir2 K+ channel is an important determinant of dendritic excitability in these cells. Here we show that opening of these channels is potently reduced by signaling through M1 muscarinic receptors in striatopallidal neurons, but not in striatonigral neurons. This asymmetry could be attributed to differences in the subunit composition of Kir2 channels. Dopamine depletion alters the subunit composition further, rendering Kir2 channels in striatopallidal neurons even more susceptible to modulation. Reduced opening of Kir2 channels enhances dendritic excitability and synaptic integration. This cell type–specific enhancement of dendritic excitability is an essential trigger for synaptic pruning after dopamine depletion, as pruning was prevented by genetic deletion of M1 muscarinic receptors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Muscarine inhibits an inwardly rectifying K+-selective current in striatal MSNs.
Figure 2: Muscarine preferentially modulates Kir2 channels in striatopallidal MSNs.
Figure 3: Selective modulation of Kir2 channels is determined by expression of Kir2.3 subunits.
Figure 4: Modulation of dendritically targeted Kir2 channels enhances the temporal summation of EPSPs.
Figure 5: DA depletion increased the relative abundance of Kir2.3 subunits and the M1 modulation of Kir2 channels.
Figure 6: Genetic depletion of M1 muscarinic receptors prevented spine pruning after DA depletion.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Albin, R.L., Young, A.B. & Penney, J.B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989).

    Article  CAS  Google Scholar 

  2. Wooten, G. Neurobiology of Disease (Oxford Univ. Press, New York, 1990).

  3. Day, M. et al. Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat. Neurosci. 9, 251–259 (2006).

    Article  CAS  Google Scholar 

  4. Bolam, J.P., Hanley, J.J., Booth, P.A. & Bevan, M.D. Synaptic organisation of the basal ganglia. J. Anat. 196, 527–542 (2000).

    Article  CAS  Google Scholar 

  5. Howe, A.R. & Surmeier, D.J. Muscarinic receptors modulate N-, P-, and L-type Ca2+ currents in rat striatal neurons through parallel pathways. J. Neurosci. 15, 458–469 (1995).

    Article  CAS  Google Scholar 

  6. Galarraga, E. et al. Cholinergic modulation of neostriatal output: a functional antagonism between different types of muscarinic receptors. J. Neurosci. 19, 3629–3638 (1999).

    Article  CAS  Google Scholar 

  7. Shen, W., Hamilton, S.E., Nathanson, N.M. & Surmeier, D.J. Cholinergic suppression of KCNQ channel currents enhances excitability of striatal medium spiny neurons. J. Neurosci. 25, 7449–7458 (2005).

    Article  CAS  Google Scholar 

  8. Hersch, S.M., Gutekunst, C.A., Rees, H.D., Heilman, C.J. & Levey, A.I. Distribution of m1-m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype-specific antibodies. J. Neurosci. 14, 3351–3363 (1994).

    Article  CAS  Google Scholar 

  9. Yan, Z., Flores-Hernandez, J. & Surmeier, D.J. Coordinated expression of muscarinic receptor messenger RNAs in striatal medium spiny neurons. Neuroscience 103, 1017–1024 (2001).

    Article  CAS  Google Scholar 

  10. Wilson, C.J. Basal ganglia in. The Synaptic Organization of the Brain (ed. G.M. Shepherd) 361–414 (Oxford Univ. Press, Oxford, UK, 2004).

    Chapter  Google Scholar 

  11. Barbeau, A. The pathogenesis of Parkinson's disease: a new hypothesis. Can. Med. Assoc. J. 87, 802–807 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ding, J. et al. RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nat. Neurosci. 9, 832–842 (2006).

    Article  CAS  Google Scholar 

  13. Mandel, R.J., Leanza, G., Nilsson, O.G. & Rosengren, E. Amphetamine induces excess release of striatal acetylcholine in vivo that is independent of nigrostriatal dopamine. Brain Res. 653, 57–65 (1994).

    Article  CAS  Google Scholar 

  14. Robertson, G.S., Hubert, G.W., Tham, C.S. & Fibiger, H.C. Lesions of the mesotelencephalic dopamine system enhance the effects of selective dopamine D1 and D2 receptor agonists on striatal acetylcholine release. Eur. J. Pharmacol. 219, 323–325 (1992).

    Article  CAS  Google Scholar 

  15. Anderson, J.J., Kuo, S., Chase, T.N. & Engber, T.M. Dopamine D1 receptor-stimulated release of acetylcholine in rat striatum is mediated indirectly by activation of striatal neurokinin1 receptors. J. Pharmacol. Exp. Ther. 269, 1144–1151 (1994).

    CAS  PubMed  Google Scholar 

  16. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).

    Article  CAS  Google Scholar 

  17. Figueroa, A., Galarraga, E. & Bargas, J. Muscarinic receptors involved in the subthreshold cholinergic actions of neostriatal spiny neurons. Synapse 46, 215–223 (2002).

    Article  CAS  Google Scholar 

  18. Horn, R. & Marty, A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J. Gen. Physiol. 92, 145–159 (1988).

    Article  CAS  Google Scholar 

  19. Talley, E.M., Solorzano, G., Lei, Q., Kim, D. & Bayliss, D.A. CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. J. Neurosci. 21, 7491–7505 (2001).

    Article  CAS  Google Scholar 

  20. Du, X. et al. Characteristic interactions with phosphatidylinositol 4,5-bisphosphate determine regulation of Kir channels by diverse modulators. J. Biol. Chem. 279, 37271–37281 (2004).

    Article  CAS  Google Scholar 

  21. Suh, B.C. & Hille, B. Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr. Opin. Neurobiol. 15, 370–378 (2005).

    Article  CAS  Google Scholar 

  22. Nichols, C.G. & Lopatin, A.N. Inward rectifier potassium channels. Annu. Rev. Physiol. 59, 171–191 (1997).

    Article  CAS  Google Scholar 

  23. Topert, C. et al. Kir2.4: a novel K+ inward rectifier channel associated with motoneurons of cranial nerve nuclei. J. Neurosci. 18, 4096–4105 (1998).

    Article  CAS  Google Scholar 

  24. Huang, C.L., Feng, S. & Hilgemann, D.W. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβχ. Nature 391, 803–806 (1998).

    Article  CAS  Google Scholar 

  25. Chuang, H., Jan, Y.N. & Jan, L.Y. Regulation of IRK3 inward rectifier K+ channel by m1 acetylcholine receptor and intracellular magnesium. Cell 89, 1121–1132 (1997).

    Article  CAS  Google Scholar 

  26. Karschin, C., Dissmann, E., Stuhmer, W. & Karschin, A. IRK(1–3) and GIRK(1–4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J. Neurosci. 16, 3559–3570 (1996).

    Article  CAS  Google Scholar 

  27. Tkatch, T., Baranauskas, G. & Surmeier, D.J. Kv4.2 mRNA abundance and A-type K+ current amplitude are linearly related in basal ganglia and basal forebrain neurons. J. Neurosci. 20, 579–588 (2000).

    Article  CAS  Google Scholar 

  28. Inanobe, A. et al. Inward rectifier K+ channel Kir2.3 is localized at the postsynaptic membrane of excitatory synapses. Am. J. Physiol. Cell Physiol. 282, C1396–C1403 (2002).

    Article  CAS  Google Scholar 

  29. Pruss, H., Derst, C., Lommel, R. & Veh, R.W. Differential distribution of individual subunits of strongly inwardly rectifying potassium channels (Kir2 family) in rat brain. Brain Res. Mol. Brain Res. 139, 63–79 (2005).

    Article  Google Scholar 

  30. Pruss, H. et al. Kir2 potassium channels in rat striatum are strategically localized to control basal ganglia function. Brain Res. Mol. Brain Res. 110, 203–219 (2003).

    Article  CAS  Google Scholar 

  31. Segal, M., Greenberger, V. & Korkotian, E. Formation of dendritic spines in cultured striatal neurons depends on excitatory afferent activity. Eur. J. Neurosci. 17, 2573–2585 (2003).

    Article  Google Scholar 

  32. Delmas, P., Crest, M. & Brown, D.A. Functional organization of PLC signaling microdomains in neurons. Trends Neurosci. 27, 41–47 (2004).

    Article  CAS  Google Scholar 

  33. Calabresi, P., Centonze, D., Gubellini, P., Pisani, A. & Bernardi, G. Blockade of M2-like muscarinic receptors enhances long-term potentiation at corticostriatal synapses. Eur. J. Neurosci. 10, 3020–3023 (1998).

    Article  CAS  Google Scholar 

  34. Ungerstedt, U. Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol. Scand. Suppl. 367, 69–93 (1971).

    Article  CAS  Google Scholar 

  35. Tillerson, J.L. et al. Forced limb-use effects on the behavioral and neurochemical effects of 6-hydroxydopamine. J. Neurosci. 21, 4427–4435 (2001).

    Article  CAS  Google Scholar 

  36. McNeill, T.H., Brown, S.A., Rafols, J.A. & Shoulson, I. Atrophy of medium spiny I striatal dendrites in advanced Parkinson's disease. Brain Res. 455, 148–152 (1988).

    Article  CAS  Google Scholar 

  37. Mermelstein, P.G., Song, W.J., Tkatch, T., Yan, Z. & Surmeier, D.J. Inwardly rectifying potassium (IRK) currents are correlated with IRK subunit expression in rat nucleus accumbens medium spiny neurons. J. Neurosci. 18, 6650–6661 (1998).

    Article  CAS  Google Scholar 

  38. Patel, A.J. & Honore, E. Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci. 24, 339–346 (2001).

    Article  CAS  Google Scholar 

  39. Tinker, A., Jan, Y.N. & Jan, L.Y. Regions responsible for the assembly of inwardly rectifying potassium channels. Cell 87, 857–868 (1996).

    Article  CAS  Google Scholar 

  40. Leonoudakis, D., Conti, L.R., Radeke, C.M., McGuire, L.M. & Vandenberg, C.A. A multiprotein trafficking complex composed of SAP97, CASK, Veli, and Mint1 is associated with inward rectifier Kir2 potassium channels. J. Biol. Chem. 279, 19051–19063 (2004).

    Article  CAS  Google Scholar 

  41. Koch, C. & Zador, A. The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. J. Neurosci. 13, 413–422 (1993).

    Article  CAS  Google Scholar 

  42. Svoboda, K., Tank, D.W. & Denk, W. Direct measurement of coupling between dendritic spines and shafts. Science 272, 716–719 (1996).

    Article  CAS  Google Scholar 

  43. Olson, P.A. et al. G-protein-coupled receptor modulation of striatal CaV1.3 L-type Ca2+ channels is dependent on a Shank-binding domain. J. Neurosci. 25, 1050–1062 (2005).

    Article  CAS  Google Scholar 

  44. Calabresi, P., Centonze, D., Gubellini, P. & Bernardi, G. Activation of M1-like muscarinic receptors is required for the induction of corticostriatal LTP. Neuropharmacology 38, 323–326 (1999).

    Article  CAS  Google Scholar 

  45. Johnston, D. et al. Dendritic potassium channels in hippocampal pyramidal neurons. J. Physiol. (Lond.) 525, 75–81 (2000).

    Article  CAS  Google Scholar 

  46. Mallet, N., Ballion, B., Le Moine, C. & Gonon, F. Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. J. Neurosci. 26, 3875–3884 (2006).

    Article  CAS  Google Scholar 

  47. Rakhilin, S.V. et al. A network of control mediated by regulator of calcium/calmodulin-dependent signaling. Science 306, 698–701 (2004).

    Article  CAS  Google Scholar 

  48. Wang, Z. et al. Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons. Neuron 50, 443–452 (2006).

    Article  CAS  Google Scholar 

  49. Schwarzschild, M.A., Agnati, L., Fuxe, K., Chen, J.F. & Morelli, M. Targeting adenosine A2A receptors in Parkinson's disease. Trends Neurosci. 29, 647–654 (2006).

    Article  CAS  Google Scholar 

  50. Turrigiano, G.G. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci. 22, 221–227 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Q. Ruan, K. Saporito and C. McCoy for technical assistance, and N. Heintz and P. Greengard of Rockefeller University for supplying BAC transgenic mice. This work was supported by NIH grant NS 34696 and a grant from the Picower Foundation.

Author information

Authors and Affiliations

Authors

Contributions

W.S. designed and performed all electrophysiological experiments, analyzed the data, prepared the figures, and wrote the manuscript with D.J.S. X.T. did the immunocytochemical experiment examining the dendritic expression of Kir2.1 and 2.3 subunits. M.D. performed two-photon laser scanning microcopy to examine dendritic spine morphology after DA depletion. S.U. designed Kir2 primers and did the scRT-PCR experiment. T.T. performed the real-time RT-PCR experiment. N.M.N. generated the M1 muscarinic receptor knockout mice. D.J.S. directed the project, prepared the figures and was responsible for the final manuscript.

Corresponding author

Correspondence to D James Surmeier.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Table 1 (PDF 27072 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, W., Tian, X., Day, M. et al. Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons. Nat Neurosci 10, 1458–1466 (2007). https://doi.org/10.1038/nn1972

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1972

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing