Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A human parietal face area contains aligned head-centered visual and tactile maps

This article has been updated

Abstract

Visually guided eating, biting and kissing, and avoiding objects moving toward the face and toward which the face moves require prompt, coordinated processing of spatial visual and somatosensory information in order to protect the face and the brain. Single-cell recordings in parietal cortex have identified multisensory neurons with spatially restricted, aligned visual and somatosensory receptive fields, but so far, there has been no evidence for a topographic map in this area. Here we mapped the organization of a multisensory parietal face area in humans by acquiring functional magnetic resonance images while varying the polar angle of facial air puffs and close-up visual stimuli. We found aligned maps of tactile and near-face visual stimuli at the highest level of human association cortex—namely, in the superior part of the postcentral sulcus. We show that this area may code the location of visual stimuli with respect to the face, not with respect to the retina.

*NOTE: In the version of this article initially published online, there was an error in the affiliation in the html version. The first affiliation should read Department of Cognitive Science, University of California San Diego, La Jolla, California 92093, USA. The error has been corrected online.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental protocols and stimulus apparatus.
Figure 2: Somatosensory and visual stimuli activate a multisensory area in superior parietal cortex.
Figure 3: Aligned somatosensory and visual maps for a single subject (dorsolateral view).
Figure 4: Visual somatosensory alignment for four additional subjects.
Figure 5: Surface-based average visual and somatotopic maps from nine subjects.
Figure 6: Evidence for head-centered representation in human VIP.

Similar content being viewed by others

Change history

  • 06 October 2006

    Removed "Institute for Neural Computation"

References

  1. Duhamel, J.R., Colby, C.L. & Goldberg, M.E. Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J. Neurophys. 79, 126–136 (1998).

    Article  CAS  Google Scholar 

  2. Colby, C.L., Duhamel, J.R. & Goldberg, M.E. Ventral intraparietal area of the macaque: anatomic location and visual response properties. J. Neurophys. 69, 902–914 (1993).

    Article  CAS  Google Scholar 

  3. Bremmer, F., Duhamel, J.R., Ben Hamed, S. & Graf, W. Heading encoding in the macaque ventral intraparietal area (VIP). Eur. J. Neurosci. 16, 1554–1568 (2002).

    Article  Google Scholar 

  4. Lewis, J.W. & Van Essen, D. Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428, 112–137 (2000).

    Article  CAS  Google Scholar 

  5. Cooke, D.F. & Graziano, M.S. Super-flinchers and nerves of steel: defensive movements altered by chemical manipulation of a cortical motor area. Neuron 43, 585–593 (2004).

    Article  CAS  Google Scholar 

  6. Cooke, D.F., Taylor, C.S., Moore, T. & Graziano, M.S. Complex movements evoked by microstimulation of the ventral intraparietal area. Proc. Natl. Acad. Sci. USA 100, 6163–6168 (2003).

    Article  CAS  Google Scholar 

  7. Bremmer, F. Navigation in space–the role of the macaque ventral intraparietal area. J. Physiol. (Lond.) 566, 29–35 (2005).

    Article  CAS  Google Scholar 

  8. Grefkes, C. & Fink, G.R. The functional organization of the intraparietal sulcus in humans and monkeys. J. Anat. 207, 3–17 (2005).

    Article  Google Scholar 

  9. Avillac, M., Deneve, S., Olivier, E., Pouget, A. & Duhamel, J.R. Reference frames for representing visual and tactile locations in parietal cortex. Nat. Neurosci. 8, 941–949 (2005).

    Article  CAS  Google Scholar 

  10. Colby, C.L., Duhamel, J.R. & Goldberg, M.E. Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J. Neurophysiol. 76, 2841–2852 (1996).

    Article  CAS  Google Scholar 

  11. Grunewald, A., Linden, J.F. & Andersen, R.A. Responses to auditory stimuli in macaque lateral intraparietal area. I. Effects of training. J. Neurophysiol. 82, 330–342 (1999).

    Article  CAS  Google Scholar 

  12. Bremmer, F. et al. Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29, 287–296 (2001).

    Article  CAS  Google Scholar 

  13. Culham, J.C. & Kanwisher, N.G. Neuroimaging of cognitive functions in human parietal cortex. Curr. Opin. Neurobiol. 11, 157–163 (2001).

    Article  CAS  Google Scholar 

  14. Sereno, M.I., Pitzalis, S. & Martinez, A.M. Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294, 1350–1354 (2001).

    Article  CAS  Google Scholar 

  15. Merriam, E.P., Genovese, C.R. & Colby, C.L. Spatial updating in human parietal cortex. Neuron 39, 361–373 (2003).

    Article  CAS  Google Scholar 

  16. Medendorp, W.P., Goltz, H.C., Vilis, T. & Crawford, J.D. Gaze-centered updating of visual space in human parietal cortex. J. Neurosci. 23, 6209–6214 (2003).

    Article  CAS  Google Scholar 

  17. Sereno, M.I. et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995).

    Article  CAS  Google Scholar 

  18. Pitzalis, S. et al. Wide-field retinotopy defines human cortical visual area V6. J. Neurosci. 26, 7962–7973 (2006).

    Article  CAS  Google Scholar 

  19. Schluppeck, D., Glimcher, P. & Heeger, D.J. Topographic organization for delayed saccades in human posterior parietal cortex. J. Neurophysiol. 94, 1372–1384 (2005).

    Article  Google Scholar 

  20. Hasson, U., Nir, Y., Levy, I., Fuhrmann, G. & Malach, R. Intersubject synchronization of cortical activity during natural vision. Science 303, 1634–1640 (2004).

    Article  CAS  Google Scholar 

  21. Engel, S.A. et al. fMRI of human visual cortex. Nature 369, 525 (1994).

    Article  CAS  Google Scholar 

  22. Fischl, B., Sereno, M.I., Tootell, R.B. & Dale, A.M. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8, 272–284 (1999).

    Article  CAS  Google Scholar 

  23. Hagler, D.J., Riecke, L. & Sereno, M.I. Pointing and saccades rely on common parietal and superior frontal visuospatial maps. Neuroimage (in the press).

  24. Gattass, R. et al. Cortical visual areas in monkeys: location, topography, connections, columns, plasticity and cortical dynamics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 709–731 (2005).

    Article  Google Scholar 

  25. Hagler, D.J. & Sereno, M.I. Spatial maps in frontal and prefrontal cortex. Neuroimage 29, 567–577 (2006).

    Article  Google Scholar 

  26. Cook, E.P. & Maunsell, J.H. Attentional modulation of behavioral performance and neuronal responses in middle temporal and ventral intraparietal areas of macaque monkey. J. Neurosci. 22, 1994–2004 (2002).

    Article  CAS  Google Scholar 

  27. Beauchamp, M. See me, hear me, touch me: multisensory integration in lateral occipital-temporal cortex. Curr. Opin. Neurobiol. 15, 145–153 (2005).

    Article  CAS  Google Scholar 

  28. Calvert, G.A., Spence, C. & Stein, B.E. (eds.). Handbook of Multisensory Processing (MIT Press, Cambridge, Massachusetts, 2004).

    Google Scholar 

  29. Spence, C. & Driver, J. (eds.) Crossmodal Space and Crossmodal Attention (Oxford Univ. Press, Oxford, 2004).

    Book  Google Scholar 

  30. Huang, R.-S., & Sereno, M.I. Dodecapus: an MR-compatible system for somatosensory stimulation. Neuroimage (in the press).

  31. Sereno, M.I. & Tootell, R.B. From monkeys to humans: what do we now know about brain homologies? Curr. Opin. Neurobiol. 15, 135–144 (2005).

    Article  CAS  Google Scholar 

  32. Collins, D.L., Neelin, P., Peters, T.M. & Evans, A.C. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J. Comput. Assist. Tomogr. 18, 192–205 (1994).

    Article  CAS  Google Scholar 

  33. Culham, J.C. et al. Cortical fMRI activation produced by attentive tracking of moving targets. J. Neurophysiol. 80, 2657–2670 (1998).

    Article  CAS  Google Scholar 

  34. Orban, G.A. et al. Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI. Neuropsychologia 41, 1757–1768 (2003).

    Article  Google Scholar 

  35. Tootell, R.B., Dale, A.M., Sereno, M.I. & Malach, R. New images from human visual cortex. Trends Neurosci. 19, 481–489 (1996).

    Article  CAS  Google Scholar 

  36. Astafiev, S.V. et al. Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. J. Neurosci. 23, 4689–4699 (2003).

    Article  CAS  Google Scholar 

  37. Mori, A. et al. Fifth somatosensory cortex (SV) representation of the whole body surface in the medial bank of the anterior suprasylvian sulcus of the cat. Neurosci. Res. 11, 198–208 (1991).

    Article  CAS  Google Scholar 

  38. Monteiro, G.A., Clemo, H.R. & Meredith, M.A. Anterior ectosylvian cortical projections to the rostral suprasylvian multisensory zone in cat. Neuroreport 14, 2139–2145 (2003).

    Article  Google Scholar 

  39. Thomas, H.C. & Espinoza, S.G. Relationships between interhemispheric cortical connections and visual areas in hooded rats. Brain Res. 417, 214–224 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Hagler for developing the concept and software implementation of cross-subject averaging of complex-valued data on morphed surfaces; R. Buxton, E. Wong, T. Liu and L. Frank at the University of California San Diego fMRI Center for scan time, pulse sequences and advice; L. May and R. Kurz for technical assistance; A. Dale, S. Pitzalis, F. Dick and A. Chiba for help and discussions; and L. Kemmer for pilot experiments. Supported by National Science Foundation BCS 0224321 (M.I.S.); US National Institutes of Health R01 NS41925 (E.W.), R01 NS36722 (R.B.) and R01 HD041581 (J.S.); and the Swartz Foundation (T.-P.J.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding author

Correspondence to Martin I Sereno.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

Face stimulus location and parietal face area activity map. The position of an air puff stimulus on the face is indicated by the moving white dot (center panel). The corresponding activity in the parietal face area is illustrated as a moving white stripe on closeup views of the unfolded cortex of the left and right hemisphere of one subject (left and right panels). The upper contralateral face (red) is represented anterior to the middle (blue) and lower (green) face in each hemisphere. (MPG 341 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sereno, M., Huang, RS. A human parietal face area contains aligned head-centered visual and tactile maps. Nat Neurosci 9, 1337–1343 (2006). https://doi.org/10.1038/nn1777

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1777

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing