Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Eph receptors are negatively controlled by protein tyrosine phosphatase receptor type O

Abstract

Eph receptors are activated by the autophosphorylation of tyrosine residues upon the binding of their ligands, the ephrins; however, the protein tyrosine phosphatases (PTPs) responsible for the negative regulation of Eph receptors have not been elucidated. Here, we identified protein tyrosine phosphatase receptor type O (Ptpro) as a specific PTP that efficiently dephosphorylates both EphA and EphB receptors as substrates. Biochemical analyses revealed that Ptpro dephosphorylates a phosphotyrosine residue conserved in the juxtamembrane region, which is required for the activation and signal transmission of Eph receptors. Ptpro thus seems to moderate the amount of maximal activation of Eph receptors. Using the chick retinotectal projection system, we show that Ptpro controls the sensitivity of retinal axons to ephrins and thereby has a crucial role in the establishment of topographic projections. Our findings explain the molecular mechanism that determines the threshold of the response of Eph receptors to ephrins in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specific interaction between a substrate-trapping mutant of Ptpro and Eph receptors.
Figure 2: Dephosphorylation of Eph receptors by Ptpro.
Figure 3: Ptpro preferentially dephosphorylates the second tyrosine residue in the juxtamembrane regions of Eph receptors.
Figure 4: Ptpro regulates the sensitivity of chick retinal axons to ephrin-A2-Fc.
Figure 5: Ptpro regulates the ephrin-A2–induced growth cone collapse of retinal axons.
Figure 6: Retinotectal projection in chick embryos overexpressing Ptpro in the retina.
Figure 7: Retinotectal projection in chick embryos with suppressed Ptpro expression in the retina.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Eph Nomenclature Committee. Unified nomenclature for Eph family receptors and their ligands, the ephrins. Cell 90, 403–404 (1997).

  2. Poliakov, A., Cotrina, M. & Wilkinson, D.G. Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev. Cell 7, 465–480 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Gale, N.W. et al. Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17, 9–19 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Himanen, J.P. et al. Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling. Nat. Neurosci. 7, 501–509 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Zisch, A.H. et al. Replacing two conserved tyrosines of the EphB2 receptor with glutamic acid prevents binding of SH2 domains without abrogating kinase activity and biological responses. Oncogene 19, 177–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Binns, K.L., Taylor, P.P., Sicheri, F., Pawson, T. & Holland, S.J. Phosphorylation of tyrosine residues in the kinase domain and juxtamembrane region regulates the biological and catalytic activities of Eph receptors. Mol. Cell. Biol. 20, 4791–4805 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wybenga-Groot, L.E. et al. Structural basis for autoinhibition of the EphB2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Cell 106, 745–757 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Kullander, K. & Klein, R. Mechanisms and functions of Eph and ephrin signalling. Nat. Rev. Mol. Cell Biol. 3, 475–486 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Knöll, B. & Drescher, U. Ephrin-As as receptors in topographic projections. Trends Neurosci. 25, 145–149 (2002).

    Article  PubMed  Google Scholar 

  10. Pasquale, E.B. Eph receptor signalling casts a wide net on cell behaviour. Nat. Rev. Mol. Cell Biol. 6, 462–475 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. McLaughlin, T. & O'Leary, D.D. Molecular gradients and development of retinotopic maps. Annu. Rev. Neurosci. 28, 327–355 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Hansen, M.J., Dallal, G.E. & Flanagan, J.G. Retinal axon response to ephrin-As shows a graded, concentration-dependent transition from growth promotion to inhibition. Neuron 42, 717–730 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Hindges, R., McLaughlin, T., Genound, N., Henkemeyer, M. & O'Leary, D.D. EphB forward signaling controls directional branch extension and arborization required for dorsal-ventral retinotopic mapping. Neuron 35, 475–487 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Shintani, T. et al. Large-scale identification and characterization of genes with asymmetric expression patterns in the developing chick retina. J. Neurobiol. 59, 34–47 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Andersen, J.N. et al. A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage. FASEB J. 18, 8–30 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Ledig, M.M. et al. Expression of receptor tyrosine phosphatases during development of the retinotectal projection of the chick. J. Neurobiol. 39, 81–96 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Stepanek, L. et al. CRYP-2/cPTPRO is a neurite inhibitory repulsive guidance cue for retinal neurons in vitro. J. Cell Biol. 154, 867–878 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ostman, A. & Bohmer, F.-D. Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases. Trends Cell Biol. 11, 258–266 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Flint, A.J., Tiganis, T., Barford, D. & Tonks, N.K. Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proc. Natl. Acad. Sci. USA 94, 1680–1685 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vielmetter, J., Stolze, B., Bonhoeffer, F. & Stuermer, C.A. In vitro assay to test differential substrate affinities of growing axons and migratory cells. Exp. Brain Res. 81, 283–287 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Hornberger, M.R. et al. Modulation of EphA receptor function by coexpressed ephrinA ligands on retinal ganglion cell axons. Neuron 22, 731–742 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Cheng, H.J. & Flanagan, J.G. Identification and cloning of ELF-1, a developmentally expressed ligand for the Mek4 and Sek receptor tyrosine kinases. Cell 79, 157–168 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Feldheim, D.A. et al. Topographic guidance labels in a sensory projection to the forebrain. Neuron 21, 1303–1313 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, C.M. et al. Production and design of more effective avian replication-incompetent retroviral vectors. Dev. Biol. 214, 370–384 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Bell, E.J. & Brickell, P.M. Replication-competent retroviral vectors for expressing genes in avian cells in vitro and in vivo. Mol. Biotechnol. 7, 289–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Cheng, H.J., Nakamoto, M., Bergemann, A.D. & Flanagan, J.G. Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell 82, 371–381 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Holash, J.A. et al. Reciprocal expression of the Eph receptor Cek5 and ligand(s) in the early retina. Dev. Biol. 182, 256–269 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Connor, R.J., Menzel, P. & Pasquale, E.B. Expression and tyrosine phosphorylation suggest multiple mechanisms in patterning of the visual system. Dev. Biol. 193, 21–35 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Johnson, K.G. & Van Vactor, D. Receptor protein tyrosine phosphatases in nervous system development. Physiol. Rev. 83, 1–24 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Hubbard, S. & Till, J.H. Protein tyrosine kinase structure and function. Annu. Rev. Biochem. 69, 373–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Hubbard, S.R. Juxtamembrane autoinhibition in receptor tyrosine kinases. Nat. Rev. Mol. Cell Biol. 5, 464–470 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Eberhart, J. et al. Ephrin-A5 exerts positive or inhibitory effects on distinct subsets of EphA4-positive motor neurons. J. Neurosci. 24, 1070–1078 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Holmberg, J., Clarke, D.L. & Frisen, J. Regulation of repulsion versus adhesion by different splice forms of an Eph receptor. Nature 408, 203–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Maeda, N., Nishiwaki, T., Shintani, T., Hamanaka, H. & Noda, M. 6B4 proteoglycan/phosphacan, an extracellular variant of receptor-like protein-tyrosine phosphatase ζ/RPTPβ, binds pleiotrophin/heparin-binding growth-associated molecule (HB-GAM). J. Biol. Chem. 271, 21446–21452 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Meng, K. et al. Pleiotrophin signals increased tyrosine phosphorylation of β-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase β/ζ. Proc. Natl. Acad. Sci. USA 97, 2603–2608 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kawachi, H., Fujikawa, A., Maeda, N. & Noda, M. Identification of GIT1/Cat-1 as a substrate molecule of protein tyrosine phosphatase ζ/β by the yeast substrate-trapping system. Proc. Natl. Acad. Sci. USA 98, 6593–6598 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maeda, N. et al. A receptor-like protein-tyrosine phosphatase PTPζ/RPTPβ binds a heparin-binding growth factor midkine. Involvement of arginine 78 of midkine in the high affinity binding to PTPζ. J. Biol. Chem. 274, 12474–12479 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Hattori, M., Osterfield, M. & Flanagan, J.G. Regulated cleavage of a contact-mediated axon repellent. Science 289, 1360–1365 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Janes, P.W. et al. Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 123, 291–304 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Marston, D.J., Dickinson, S. & Nobes, C.D. Rac-dependent trans-endocytosis of ephrinBs regulates Eph-ephrin contact repulsion. Nat. Cell Biol. 5, 879–888 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Zimmer, M., Palmer, A., Kohler, J. & Klein, R. EphB-ephrinB bi-directional endocytosis terminates adhesion allowing contact mediated repulsion. Nat. Cell Biol. 5, 869–878 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Rosentreter, S.M. et al. Response of retinal ganglion cell axons to striped linear gradients of repellent guidance molecules. J. Neurobiol. 37, 541–562 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Walter, J., Müller, B. & Bonhoeffer, F. Axonal guidance by an avoidance mechanism. J. Physiol. (Paris) 84, 104–110 (1990).

    CAS  Google Scholar 

  44. Wang, H.U. & Anderson, D.J. Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth. Neuron 18, 383–396 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Yuasa-Kawada, J. et al. Axonal morphogenesis controlled by antagonistic roles of two CRMP subtypes in microtubule organization. Eur. J. Neurosci. 17, 2329–2343 (2003).

    Article  PubMed  Google Scholar 

  46. Yuasa, J., Hirano, S., Yamagata, M. & Noda, M. Visual projection map specified by topographic expression of transcription factors in the retina. Nature 382, 632–635 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Sakuta, H. et al. Ventroptin: A BMP-4 antagonist expressed in a double-gradient pattern in the retina. Science 293, 111–115 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Takahashi, H., Shintani, T., Sakuta, H. & Noda, M. CBF1 controls the retinotectal topographical map along the anteroposterior axis through multiple mechanisms. Development 130, 5203–5215 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C.L. Cepko (Harvard Medical School, Boston) for providing the RIAS vector and F. Bonhoeffer (Max-Planck-Institute for Developmental Biology, Tübingen) for the silicon matrix used to produce the ephrin-A2-Fc stripe. We also thank Y. Ayabe and M. Gotoh for technical assistance and A. Kodama for secretarial assistance. This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan and the Core Research for Evolutional Science and Technology (CREST) program of the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaharu Noda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Expression analysis of Ptpro in the developing chick retina. (PDF 58 kb)

Supplementary Fig. 2

Specific dephosphorylation of Eph receptors by Ptpro. (PDF 33 kb)

Supplementary Fig. 3

Inhibition of ephrin-induced tyrosine phosphorylation of Eph receptors by Ptpro in PC-3 prostrate epithelial cells expressing EphA2 endogenously. (PDF 28 kb)

Supplementary Fig. 4

Ptprz exerts no effect on the sensitivity of chick retinal axons to ephrin-A2-Fc. (PDF 32 kb)

Supplementary Fig. 5

Improvement of transfection and expression of the transgene of the RIAS vector on simultaneous electroporation of the RCAS vector. (PDF 28 kb)

Supplementary Fig. 6

Retinotectal projection at E19 in embryos electroporated with RCAS/PtproδN(DA). (PDF 57 kb)

Supplementary Methods (PDF 137 kb)

Supplementary Note (PDF 64 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shintani, T., Ihara, M., Sakuta, H. et al. Eph receptors are negatively controlled by protein tyrosine phosphatase receptor type O. Nat Neurosci 9, 761–769 (2006). https://doi.org/10.1038/nn1697

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1697

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing