Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

UNC-6/Netrin induces neuronal asymmetry and defines the site of axon formation

Abstract

UNC-6/Netrin and its receptor UNC-40/DCC are conserved regulators of growth cone guidance. By directly observing developing neurons in vivo, we show that UNC-6 and UNC-40 also function during axon formation to initiate, maintain and orient asymmetric neuronal growth. The immature HSN neuron of Caenorhabditis elegans breaks spherical symmetry to extend a leading edge toward ventral UNC-6. In unc-6 and unc-40 mutants, leading edge formation fails, the cell remains symmetrical until late in development and the axon that eventually forms is misguided. Thus netrin has two activities: one that breaks neuronal symmetry and one that guides the future axon. As the axon forms, UNC-6, UNC-40 and the lipid modulators AGE-1/phosphoinositide 3-kinase (PI3K) and DAF-18/PTEN drive the actin-regulatory pleckstrin homology (PH) domain protein MIG-10/lamellipodin ventrally in HSN to promote asymmetric growth. The coupling of a directional netrin cue to sustained asymmetric growth via PI3K signaling is reminiscent of polarization in chemotaxing cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of HSN in wild-type C. elegans.
Figure 2: HSN neurites are microtubule-containing, actin-rich structures.
Figure 3: HSN development in netrin mutants.
Figure 4: Heat-inducible expression of UNC-6/netrin induces leading edge formation in HSN.
Figure 5: UNC-40::GFP and MIG-10::YFP are ventrally localized in HSN.
Figure 6: MIG-10::YFP localizes ventrally in a netrin-dependent manner.

Similar content being viewed by others

References

  1. Dotti, C.G., Sullivan, C.A. & Banker, G.A. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8, 1454–1468 (1988).

    Article  CAS  Google Scholar 

  2. Inagaki, N. et al. CRMP-2 induces axons in cultured hippocampal neurons. Nat. Neurosci. 4, 781–782 (2001).

    Article  CAS  Google Scholar 

  3. Shi, S.H., Cheng, T., Jan, L.Y. & Jan, Y.N. APC and GSK-3β are involved in mPar3 targeting to the nascent axon and establishment of neuronal polarity. Curr. Biol. 14, 2025–2032 (2004).

    Article  CAS  Google Scholar 

  4. Kishi, M., Pan, Y.A., Crump, J.G. & Sanes, J.R. Mammalian SAD kinases are required for neuronal polarization. Science 307, 929–932 (2005).

    Article  CAS  Google Scholar 

  5. Shi, S.H., Jan, L.Y. & Jan, Y.N. Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell 112, 63–75 (2003).

    Article  CAS  Google Scholar 

  6. Menager, C., Arimura, N., Fukata, Y. & Kaibuchi, K. PIP3 is involved in neuronal polarization and axon formation. J. Neurochem. 89, 109–118 (2004).

    Article  CAS  Google Scholar 

  7. da Silva, J.S. & Dotti, C.G. Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat. Rev. Neurosci. 3, 694–704 (2002).

    Article  CAS  Google Scholar 

  8. Goldberg, J.L. et al. Retinal ganglion cells do not extend axons by default: promotion by neurotrophic signaling and electrical activity. Neuron 33, 689–702 (2002).

    Article  CAS  Google Scholar 

  9. Lefcort, F. & Bentley, D. Organization of cytoskeletal elements and organelles preceding growth cone emergence from an identified neuron in situ. J. Cell Biol. 108, 1737–1749 (1989).

    Article  CAS  Google Scholar 

  10. Halfter, W., Deiss, S. & Schwarz, U. The formation of the axonal pattern in the embryonic avian retina. J. Comp. Neurol. 232, 466–480 (1985).

    Article  CAS  Google Scholar 

  11. Weiner, O.D. Regulation of cell polarity during eukaryotic chemotaxis: the chemotactic compass. Curr. Opin. Cell Biol. 14, 196–202 (2002).

    Article  CAS  Google Scholar 

  12. Van Haastert, P.J. & Devreotes, P.N. Chemotaxis: signalling the way forward. Nat. Rev. Mol. Cell Biol. 5, 626–634 (2004).

    Article  CAS  Google Scholar 

  13. Weiner, O.D. et al. A PtdInsP(3)- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat. Cell Biol. 4, 509–513 (2002).

    Article  CAS  Google Scholar 

  14. Hedgecock, E.M., Culotti, J.G. & Hall, D.H. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4, 61–85 (1990).

    Article  CAS  Google Scholar 

  15. Wadsworth, W.G., Bhatt, H. & Hedgecock, E.M. Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans. Neuron 16, 35–46 (1996).

    Article  CAS  Google Scholar 

  16. Serafini, T. et al. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78, 409–424 (1994).

    Article  CAS  Google Scholar 

  17. Hong, K. et al. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97, 927–941 (1999).

    Article  CAS  Google Scholar 

  18. Chan, S.S. et al. UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell 87, 187–195 (1996).

    Article  CAS  Google Scholar 

  19. Keino-Masu, K. et al. Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell 87, 175–185 (1996).

    Article  CAS  Google Scholar 

  20. Hamelin, M., Zhou, Y., Su, M.W., Scott, I.M. & Culotti, J.G. Expression of the UNC-5 guidance receptor in the touch neurons of C. elegans steers their axons dorsally. Nature 364, 327–330 (1993).

    Article  CAS  Google Scholar 

  21. Desai, C., Garriga, G., McIntire, S.L. & Horvitz, H.R. A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons. Nature 336, 638–646 (1988).

    Article  CAS  Google Scholar 

  22. Garriga, G., Desai, C. & Horvitz, H.R. Cell interactions control the direction of outgrowth, branching and fasciculation of the HSN axons of Caenorhabditis elegans. Development 117, 1071–1087 (1993).

    CAS  PubMed  Google Scholar 

  23. Knobel, K.M., Jorgensen, E.M. & Bastiani, M.J. Growth cones stall and collapse during axon outgrowth in Caenorhabditis elegans. Development 126, 4489–4498 (1999).

    CAS  PubMed  Google Scholar 

  24. Krause, M., Dent, E.W., Bear, J.E., Loureiro, J.J. & Gertler, F.B. Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annu. Rev. Cell Dev. Biol. 19, 541–564 (2003).

    Article  CAS  Google Scholar 

  25. Gitai, Z., Yu, T.W., Lundquist, E.A., Tessier-Lavigne, M. & Bargmann, C.I. The netrin receptor UNC-40/DCC stimulates axon attraction and outgrowth through enabled and, in parallel, Rac and UNC-115/AbLIM. Neuron 37, 53–65 (2003).

    Article  CAS  Google Scholar 

  26. Lebrand, C. et al. Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1. Neuron 42, 37–49 (2004).

    Article  CAS  Google Scholar 

  27. Manser, J., Roonprapunt, C. & Margolis, B. C. elegans cell migration gene mig-10 shares similarities with a family of SH2 domain proteins and acts cell nonautonomously in excretory canal development. Dev. Biol. 184, 150–164 (1997).

    Article  CAS  Google Scholar 

  28. Krause, M. et al. Lamellipodin, an Ena/VASP ligand, is implicated in the regulation of lamellipodial dynamics. Dev. Cell 7, 571–583 (2004).

    Article  CAS  Google Scholar 

  29. Stringham, E.G., Dixon, D.K., Jones, D. & Candido, E.P. Temporal and spatial expression patterns of the small heat shock (hsp16) genes in transgenic Caenorhabditis elegans. Mol. Biol. Cell 3, 221–233 (1992).

    Article  CAS  Google Scholar 

  30. Gil, E.B., Malone Link, E., Liu, L.X., Johnson, C.D. & Lees, J.A. Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene. Proc. Natl. Acad. Sci. USA 96, 2925–2930 (1999).

    Article  CAS  Google Scholar 

  31. Morris, J.Z., Tissenbaum, H.A. & Ruvkun, G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382, 536–539 (1996).

    Article  CAS  Google Scholar 

  32. Polleux, F., Giger, R.J., Ginty, D.D., Kolodkin, A.L. & Ghosh, A. Patterning of cortical efferent projections by semaphorin-neuropilin interactions. Science 282, 1904–1906 (1998).

    Article  CAS  Google Scholar 

  33. Lieberam, I., Agalliu, D., Nagasawa, T., Ericson, J. & Jessell, T.M.A. Cxcl12-CXCR4 chemokine signaling pathway defines the initial trajectory of mammalian motor axons. Neuron 47, 667–679 (2005).

    Article  CAS  Google Scholar 

  34. Gad, J.M., Keeling, S.L., Shu, T., Richards, L.J. & Cooper, H.M. The spatial and temporal expression patterns of netrin receptors, DCC and neogenin, in the developing mouse retina. Exp. Eye Res. 70, 711–722 (2000).

    Article  CAS  Google Scholar 

  35. Deiner, M.S. et al. Netrin-1 and DCC mediate axon guidance locally at the optic disc: loss of function leads to optic nerve hypoplasia. Neuron 19, 575–589 (1997).

    Article  CAS  Google Scholar 

  36. Hiramoto, M., Hiromi, Y., Giniger, E. & Hotta, Y. The Drosophila Netrin receptor Frazzled guides axons by controlling Netrin distribution. Nature 406, 886–889 (2000).

    Article  CAS  Google Scholar 

  37. Jiang, H., Guo, W., Liang, X. & Rao, Y. Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell 120, 123–135 (2005).

    CAS  PubMed  Google Scholar 

  38. Funamoto, S., Meili, R., Lee, S., Parry, L. & Firtel, R.A. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109, 611–623 (2002).

    Article  CAS  Google Scholar 

  39. Iijima, M. & Devreotes, P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109, 599–610 (2002).

    Article  CAS  Google Scholar 

  40. Ming, G. et al. Phospholipase C-gamma and phosphoinositide 3-kinase mediate cytoplasmic signaling in nerve growth cone guidance. Neuron 23, 139–148 (1999).

    Article  CAS  Google Scholar 

  41. Campbell, D.S. & Holt, C.E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32, 1013–1026 (2001).

    Article  CAS  Google Scholar 

  42. Xie, Y. et al. Phosphatidylinositol transfer protein-alpha in netrin-1-induced PLC signalling and neurite outgrowth. Nat. Cell Biol. 7, 1124–1132 (2005).

    Article  CAS  Google Scholar 

  43. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mello, C. & Fire, A. DNA transformation. Methods Cell Biol. 48, 451–482 (1995).

    Article  CAS  Google Scholar 

  45. Baumeister, R., Liu, Y. & Ruvkun, G. Lineage-specific regulators couple cell lineage asymmetry to the transcription of the Caenorhabditis elegans POU gene unc-86 during neurogenesis. Genes Dev. 10, 1395–1410 (1996).

    Article  CAS  Google Scholar 

  46. Colavita, A., Krishna, S., Zheng, H., Padgett, R.W. & Culotti, J.G. Pioneer axon guidance by UNC-129, a C. elegans TGF-beta. Science 281, 706–709 (1998).

    Article  CAS  Google Scholar 

  47. Sato, T. A modified method for lead staining of thin sections. J. Electron Microsc. (Tokyo) 17, 158–159 (1968).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Krause, F. Gertler, M. Dell, G. Garriga and C. Chang for sharing results before publication; B. Wadsworth, Z. Gitai, T. Yu, G. Seydoux, M. Krause, F. Gertler and E. Lundquist for reagents used in this study; A. North at the Bio-Imaging Center at Rockefeller University; the Caenorhabditis Genetics Center for strains; K. Kemphues and R. Aroian for antibodies; and K. McDonald for use of the Bal-Tec HPM 010 high pressure freezing device and Leica AFS freeze-substitution device at the University of California Berkeley. We thank M. Hatten, M. Hilliard, S. Chalasani, M. Gallegos, G. Hollopeter, J. Gray and F. Kelly for thoughtful comments on the manuscript. This work was funded by a University of California San Francisco Chancellor's Fellowship to C.E.A. and by the Howard Hughes Medical Institute. C.I.B. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia I Bargmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Effects of UNC-40 target genes on HSN development. (PDF 629 kb)

Supplementary Fig. 2

Dorsally localized MIG-10::YFP in an unc-129::unc-6 animal. (PDF 269 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adler, C., Fetter, R. & Bargmann, C. UNC-6/Netrin induces neuronal asymmetry and defines the site of axon formation. Nat Neurosci 9, 511–518 (2006). https://doi.org/10.1038/nn1666

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1666

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing