Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol

This article has been updated

Abstract

Menthol is a cooling compound derived from mint leaves and is extensively used as a flavoring chemical. Menthol activates transient receptor potential melastatin 8 (TRPM8), an ion channel also activated by cold, voltage and phosphatidylinositol-4,5-bisphosphate (PIP2). Here we investigated the mechanism by which menthol activates mouse TRPM8. Using a new high-throughput approach, we screened a random mutant library consisting of 14,000 individual TRPM8 mutants for clones that are affected in their response to menthol while retaining channel function. We identified determinants of menthol sensitivity in two regions: putative transmembrane segment 2 (S2) and the C-terminal TRP domain. Analysis of these mutants indicated that activation by menthol involves a gating mechanism distinct and separable from gating by cold, voltage or PIP2. Notably, TRP domain mutations mainly attenuated menthol efficacy, suggesting that this domain influences events downstream of initial binding. In contrast, S2 mutations strongly shifted the concentration dependence of menthol activation, raising the possibility that S2 influences menthol binding.

Note: The AOP version of this article was corrected on 19 March 2006. Please see the PDF for details.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Screening of a random mutant library identifies menthol-insensitive TRPM8 mutants.
Figure 2: Selective loss of menthol sensitivity by mutations in the S2 and TRP domains of TRPM8.
Figure 3: Structural requirements for menthol sensitivity.
Figure 4: Mutation of a tripeptide in the TRP domain alters ligand selectivity.
Figure 5: Icilin sensitivity is lost in Y745H and L1009R.

Similar content being viewed by others

Change history

  • 19 March 2006

    Corrected affiliation for an author

References

  1. Peier, A.M. et al. A TRP channel that senses cold stimuli and menthol. Cell 108, 705–715 (2002).

    Article  CAS  Google Scholar 

  2. McKemy, D.D., Neuhausser, W.M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 (2002).

    Article  CAS  Google Scholar 

  3. Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849–857 (2004).

    Article  CAS  Google Scholar 

  4. Jordt, S.E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260–265 (2004).

    Article  CAS  Google Scholar 

  5. Moqrich, A. et al. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307, 1468–1472 (2005).

    Article  CAS  Google Scholar 

  6. Macpherson, L.J. et al. The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr. Biol. 15, 929–934 (2005).

    Article  CAS  Google Scholar 

  7. Bautista, D.M. et al. Pungent products from garlic activate the sensory ion channel TRPA1. Proc. Natl. Acad. Sci. USA 102, 12248–12252 (2005).

    Article  CAS  Google Scholar 

  8. Caterina, M.J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).

    Article  CAS  Google Scholar 

  9. Xu, H., Blair, N.T. & Clapham, D.E. Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J. Neurosci. 25, 8924–8937 (2005).

    Article  CAS  Google Scholar 

  10. Liu, B. & Qin, F. Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 25, 1674–1681 (2005).

    Article  CAS  Google Scholar 

  11. Rohacs, T., Lopes, C.M., Michailidis, I. & Logothetis, D.E. PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat. Neurosci. 8, 626–634 (2005).

    Article  CAS  Google Scholar 

  12. Voets, T. et al. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430, 748–754 (2004).

    Article  CAS  Google Scholar 

  13. Brauchi, S., Orio, P. & Latorre, R. Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc. Natl. Acad. Sci. USA 101, 15494–15499 (2004).

    Article  CAS  Google Scholar 

  14. Jordt, S.E. & Julius, D. Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 108, 421–430 (2002).

    Article  CAS  Google Scholar 

  15. Jung, J. et al. Agonist recognition sites in the cytosolic tails of vanilloid receptor 1. J. Biol. Chem. 277, 44448–44454 (2002).

    Article  CAS  Google Scholar 

  16. Chuang, H.H., Neuhausser, W.M. & Julius, D. The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Neuron 43, 859–869 (2004).

    Article  CAS  Google Scholar 

  17. Zhang, H., He, C., Yan, X., Mirshahi, T. & Logothetis, D.E. Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nat. Cell Biol. 1, 183–188 (1999).

    Article  CAS  Google Scholar 

  18. Poulos, T.L., Finzel, B.C. & Howard, A.J. High-resolution crystal structure of cytochrome P450cam. J. Mol. Biol. 195, 687–700 (1987).

    Article  CAS  Google Scholar 

  19. Nagamine, K. et al. Molecular cloning of a new putative Ca2+ channel protein (TRPC7) highly expressed in brain. Genomics 54, 124–131 (1998).

    Article  CAS  Google Scholar 

  20. Varnum, M.D., Black, K.D. & Zagotta, W.N. Molecular mechanism for ligand discrimination of cyclic nucleotide-gated channels. Neuron 15, 619–625 (1995).

    Article  CAS  Google Scholar 

  21. Tibbs, G.R., Goulding, E.H. & Siegelbaum, S.A. Allosteric activation and tuning of ligand efficacy in cyclic-nucleotide-gated channels. Nature 386, 612–615 (1997).

    Article  CAS  Google Scholar 

  22. Story, G.M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819–829 (2003).

    Article  CAS  Google Scholar 

  23. Behrendt, H.J., Germann, T., Gillen, C., Hatt, H. & Jostock, R. Characterization of the mouse cold-menthol receptor TRPM8 and vanilloid receptor type-1 VR1 using a fluorometric imaging plate reader (FLIPR) assay. Br. J. Pharmacol. 141, 737–745 (2004).

    Article  CAS  Google Scholar 

  24. Zhou, L., Olivier, N.B., Yao, H., Young, E.C. & Siegelbaum, S.A. A conserved tripeptide in CNG and HCN channels regulates ligand gating by controlling C-terminal oligomerization. Neuron 44, 823–834 (2004).

    Article  CAS  Google Scholar 

  25. Goulding, E.H., Tibbs, G.R. & Siegelbaum, S.A. Molecular mechanism of cyclic-nucleotide-gated channel activation. Nature 372, 369–374 (1994).

    Article  CAS  Google Scholar 

  26. Yuan, J.P. et al. Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114, 777–789 (2003).

    Article  CAS  Google Scholar 

  27. Garcia-Sanz, N. et al. Identification of a tetramerization domain in the C terminus of the vanilloid receptor. J. Neurosci. 24, 5307–5314 (2004).

    Article  CAS  Google Scholar 

  28. Yu, F.H. & Catterall, W.A. The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci. STKE 2004, re15 (2004).

    PubMed  Google Scholar 

  29. Rosenbaum, T. & Gordon, S.E. Quickening the pace: looking into the heart of HCN channels. Neuron 42, 193–196 (2004).

    Article  CAS  Google Scholar 

  30. Kaupp, U.B. & Seifert, R. Cyclic nucleotide-gated ion channels. Physiol. Rev. 82, 769–824 (2002).

    Article  CAS  Google Scholar 

  31. Craven, K.B. & Zagotta, W.N. CNG and HCN channels: two peas, one pod. Annu. Rev. Physiol. 68, 375–401 (2006).

    Article  CAS  Google Scholar 

  32. Johnson, J.P., Jr. & Zagotta, W.N. Rotational movement during cyclic nucleotide-gated channel opening. Nature 412, 917–921 (2001).

    Article  CAS  Google Scholar 

  33. Bhave, G. et al. Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc. Natl. Acad. Sci. USA 100, 12480–12485 (2003).

    Article  CAS  Google Scholar 

  34. Wang, T., Jiao, Y. & Montell, C. Dissecting independent channel and scaffolding roles of the Drosophila transient receptor potential channel. J. Cell Biol. 171, 685–694 (2005).

    Article  CAS  Google Scholar 

  35. Colquhoun, D. Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br. J. Pharmacol. 125, 924–947 (1998).

    Article  CAS  Google Scholar 

  36. Long, S.B., Campbell, E.B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005).

    Article  CAS  Google Scholar 

  37. Long, S.B., Campbell, E.B. & Mackinnon, R. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309, 903–908 (2005).

    Article  CAS  Google Scholar 

  38. Jiang, Y. et al. X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41 (2003).

    Article  CAS  Google Scholar 

  39. Taylor, J.R. An Introduction to Error Analysis: the Study of Uncertainties in Physical Measurements. (University Science Books, Mill Valley, California, 1982).

    Google Scholar 

Download references

Acknowledgements

We thank N. Gray, L. Miraglia, J. Zhang, M. Medina, A. Saghatelian, B. Cravatt, T. Jegla, V. Lee and S. Peters for valuable contributions and input. This work was supported by NINDS grant NS046303. M.B. is supported by a postdoctoral fellowship from the American Heart Association. A.P. is Damon Runyon Fellow and a member of the H. Dorris Neurological Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ardem Patapoutian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Examples of currents generated by cold and menthol in wild type, Y745H and L1009R. (PDF 683 kb)

Supplementary Table 1

Additional mutants for which a >3 fold decrease in menthol/cold response ratio was observed in the secondary screen (see text). (PDF 13 kb)

Supplementary Methods (PDF 72 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandell, M., Dubin, A., Petrus, M. et al. High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol. Nat Neurosci 9, 493–500 (2006). https://doi.org/10.1038/nn1665

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1665

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing