Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alpha-fetoprotein protects the developing female mouse brain from masculinization and defeminization by estrogens

Abstract

Two clearly opposing views exist on the function of alpha-fetoprotein (AFP), a fetal plasma protein that binds estrogens with high affinity, in the sexual differentiation of the rodent brain. AFP has been proposed to either prevent the entry of estrogens or to actively transport estrogens into the developing female brain. The availability of Afp mutant mice (Afp−/−) now finally allows us to resolve this longstanding controversy concerning the role of AFP in brain sexual differentiation, and thus to determine whether prenatal estrogens contribute to the development of the female brain. Here we show that the brain and behavior of female Afp−/− mice were masculinized and defeminized. However, when estrogen production was blocked by embryonic treatment with the aromatase inhibitor 1,4,6-androstatriene-3,17-dione, the feminine phenotype of these mice was rescued. These results clearly demonstrate that prenatal estrogens masculinize and defeminize the brain and that AFP protects the female brain from these effects of estrogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complete absence of female sexual behavior in female mice lacking AFP.
Figure 2: Increased male-typical sexual behavior in female mice lacking AFP.
Figure 3: Neurochemical changes in female mice lacking AFP.
Figure 4: Prenatal treatment with the aromatase inhibitor ATD rescued the female phenotype of Afp2−/− females.

Similar content being viewed by others

References

  1. Andrews, G.K., Dziadek, M. & Tamaoki, T. Expression and methylation of the mouse alpha-fetoprotein gene in embryonic, adult, and neoplastic tissues. J. Biol. Chem. 257, 5148–5153 (1982).

    CAS  PubMed  Google Scholar 

  2. Tilghman, S.M. & Belayew, A. Transcriptional control of the murine albumine/alpha-fetoprotein locus during development. Proc. Natl. Acad. Sci. USA 79, 5254–5257 (1982).

    Article  CAS  Google Scholar 

  3. Raynaud, P. Influence of rat estradiol binding plasma protein (EBP) on uterotrophic activity. Steroids 21, 249–258 (1973).

    Article  CAS  Google Scholar 

  4. McEwen, B.S., Plapinger, L., Chapal, C., Gerlach, J. & Wallach, G. The role of fetoneonatal estrogen binding proteins in the association of estrogen with neonatal brain cell nuclear receptors. Brain Res. 96, 400–407 (1975).

    Article  CAS  Google Scholar 

  5. Toran-Allerand, C.D. On the genesis of sexual differentiation of the central nervous system: morphogenetic consequences of steroidal exposure and possible role of a-fetoprotein. in Sex Differences in the Brain: The Relation between Structure and Function (Progress in Brain Research Vol. 61) (eds. De Vries, G.J., De Bruin, J.P.C., Uylings, H.B.M. & Corner, M.A.) 63–98 (Elsevier, Amsterdam, 1984).

    Chapter  Google Scholar 

  6. MacLusky, N.J. & Naftolin, F. Sexual differentiation of the central nervous system. Science 211, 1294–1303 (1981).

    Article  CAS  Google Scholar 

  7. Baum, M.J. Differentiation of coital behavior in mammals: a comparative analysis. Neurosci. Biobehav. Rev. 3, 265–284 (1979).

    Article  CAS  Google Scholar 

  8. Bakker, J., Brand, T., van Ophemert, J. & Slob, A.K. Hormonal regulation of adult partner preference behavior in neonatally ATD-treated male rats. Behav. Neurosci. 107, 480–487 (1993).

    Article  CAS  Google Scholar 

  9. Döhler, K.D. et al. Participation of estrogens in female sexual differentiation of the brain: neuroanatomical, neuroendocrine, and behavioral evidence. in Sex Differences in the Brain: The Relation between Structure and Function (Progress in Brain Research Vol. 61) (eds. De Vries, G.J., De Bruin, J.P.C., Uylings, H.B.M. & Corner, M.A.) 99–117 (Elsevier, Amsterdam, 1984).

    Chapter  Google Scholar 

  10. Fitch, R.H. & Denenberg, V.H. A role for ovarian hormones in sexual differentiation of the brain. Behav. Brain Sci. 21, 311–327 (1998).

    CAS  PubMed  Google Scholar 

  11. Bakker, J., Honda, S., Harada, N. & Balthazart, J. The aromatase knockout mouse provides new evidence that estradiol is required during development in the female for the expression of socio-sexual behaviors in adulthood. J. Neurosci. 22, 9104–9112 (2002).

    Article  CAS  Google Scholar 

  12. Benno, R.W. & Williams, T.H. Evidence for intracellular localization of alpha-fetoprotein in the developing rat brain. Brain Res. 142, 182–186 (1978).

    Article  CAS  Google Scholar 

  13. Schachter, B.S. & Toran-Allerand, C.D. Intraneuronal α-fetoprotein and albumin are not synthesized locally in the developing brain. Brain Res. 281, 93–98 (1982).

    Article  CAS  Google Scholar 

  14. Gabant, P. (2002) Alpha-fetoprotein, the major fetal serum protein, is not essential for embryonic development but is required for female fertility. Proc. Natl. Acad. Sci. USA 99, 12865–12870 (2002).

    Article  CAS  Google Scholar 

  15. Dominguez-Salazar, E., Bateman, H.L. & Rissman, E.F. Background matters: the effects of estrogen receptor alpha gene disruption on male sexual behavior are modified by background strain. Horm. Behav. 46, 482–490 (2004).

    Article  CAS  Google Scholar 

  16. Wersinger, S.R. et al. Masculine sexual behavior is disrupted in male and female mice lacking a functional estrogen receptor α gene. Horm. Behav. 32, 176–183 (1997).

    Article  CAS  Google Scholar 

  17. Aussel, C. & Masseyeff, R. Rat alpha-protein-estrogen interaction. J. Steroid Biochem. 9, 547–551 (1978).

    Article  CAS  Google Scholar 

  18. Wiegand, S.J. & Terasawa, E. Discrete lesions reveal functional heterogeneity of suprachiasmatic structures in regulation of gonadotropin secretion in the female rat. Neuroendocrinology 34, 395–404 (1982).

    Article  CAS  Google Scholar 

  19. Simerly, R.B., Swanson, L.W., Handa, R.J. & Gorski, R.A. Influence of perinatal androgen on the sexually dimorphic distribution of tyrosine hydroxylase-immunoreactive cells and fibers in the anteroventral periventricular nucleus of the rat. Neuroendocrinology 40, 501–510 (1985).

    Article  CAS  Google Scholar 

  20. Tobet, S.A. & Hanna, I.K. Ontogeny of sex differences in the mammalian hypothalamus and preoptic area. Cell. Mol. Neurobiol. 17, 565–601 (1997).

    Article  CAS  Google Scholar 

  21. Simerly, R.B., Zee, M.C., Pendleton, J.W., Lubahn, D.B. & Korach, K.S. Estrogen receptor-dependent sexual differentiation of dopaminergic neurons in the preoptic region of the mouse. Proc. Natl. Acad. Sci. USA 94, 14077–14082 (1997).

    Article  CAS  Google Scholar 

  22. De Vries, G.J. et al. A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. J. Neurosci. 22, 9005–9014 (2002).

    Article  CAS  Google Scholar 

  23. De Vries, G.J. & Miller, M.A. Anatomy and function of extrahypothalamic vasopressin systems in the brain. Prog. Brain Res. 119, 3–20 (1998).

    Article  CAS  Google Scholar 

  24. Lonstein, J.S. & de Vries, G.J. Sex differences in the parental behaviour of adult virgin prairie voles: independence of gonadal hormones and vasopressin. J. Neuroendocrinol. 11, 441–449 (1999).

    Article  CAS  Google Scholar 

  25. Meijs-Roelofs, H.M., Uilenbroek, J.T., de Jong, F.H. & Welschen, R. Plasma oestradiol-17β and its relationship to serum follicle-stimulating hormone in immature female rats. J. Endocrinol. 59, 295–304 (1973).

    Article  CAS  Google Scholar 

  26. McCall, A.L., Han, S.-J., Millington, W.R. & Baum, M.J. Non-saturable transport of [3H]-oestradiol across the blood-brain barrier in female rats is reduced by neonatal serum. J. Reprod. Fertil. 61, 103–108 (1981).

    Article  CAS  Google Scholar 

  27. Toran-Allerand, C.D. Regional differences in intraneuronal localization of alpha-fetoprotein in developing mouse brain. Brain Res. 281, 213–217 (1982).

    Article  CAS  Google Scholar 

  28. McCarthy, M.M. & Konkle, A.T. When is a sex difference not a sex difference? Front. Neuroendocrinol. 26, 85–102 (2005).

    Article  CAS  Google Scholar 

  29. Bennett, J.A., Mesfin, F.B., Andersen, T.T., Gierthy, J.F. & Jacobson, H.I. A peptide derived from α-fetoprotein prevents the growth of estrogen-dependent human breast cancers sensitive and resistant to tamoxifen. Proc. Natl. Acad. Sci. USA 99, 2211–2215 (2002).

    Article  CAS  Google Scholar 

  30. Mesfin, F.B., Bennett, J.A., Jacobson, H.I., Zhu, S.J. & Andersen, T.T. Alpha-fetoprotein-derived antiestrotrophic octapeptide. Biochim. Biophys. Acta 1501, 33–43 (2000).

    Article  CAS  Google Scholar 

  31. Petra, P.H. et al. The plasma sex steroid binding protein (SBP or SHBG). A critical review of recent developments on the structure, molecular biology and function. J. Steroid Biochem. Mol. Biol. 40, 735–753 (1991).

    Article  CAS  Google Scholar 

  32. Wallen, K. Hormonal influences on sexually differentiated behavior in nonhuman primates. Front. Neuroendocrinol. 26, 7–26 (2005).

    Article  CAS  Google Scholar 

  33. Gillespie, J.R. & Uversky, V.N. Structure and function of α-fetoprotein: a biophysical overview. Biochim. Biophys. Acta 1480, 41–56 (2000).

    Article  CAS  Google Scholar 

  34. Phoenix, C.H., Goy, R.W., Gerall, A.A. & Young, W.C. Organizational action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 65, 369–382 (1959).

    Article  CAS  Google Scholar 

  35. Feder, H.H. & Whalen, R.E. Feminine behavior in neonatally castrated and estrogen-treated male rats. Science 147, 306–307 (1964).

    Article  Google Scholar 

  36. Grady, K.L., Phoenix, C.H. & Young, W.C. Role of the developing rat testis in differentiation of the neural tissues mediating mating behavior. J. Comp. Physiol. Psychol. 59, 176–182 (1965).

    Article  CAS  Google Scholar 

  37. Gerall, A.A., Dunlap, J.L. & Hendricks, S.E. Effect of ovarian secretions on female behavioral potentiality in the rat. J. Comp. Physiol. Psychol. 82, 449–465 (1973).

    Article  CAS  Google Scholar 

  38. Toda, K. et al. Targeted disruption of the aromatase P450 gene (Cyp19) in mice and their ovarian and uterine responses to 17beta-oestradiol. J. Endocrinol. 170, 99–111 (2001).

    Article  CAS  Google Scholar 

  39. Whalen, R.E. & Edwards, D.A. Hormonal determinants of the development of masculine and feminine behavior in male and female rats. Anat. Rec. 157, 173–180 (1967).

    Article  CAS  Google Scholar 

  40. Quadros, P.S., Goldstein, A.Y.N., De Vries, G.J. & Wagner, C.K. Regulation of sex differences in progesterone receptor expression in the medial preoptic nucles of postnatal rats. J. Neuroendocrinol. 14, 761–767 (2002).

    Article  CAS  Google Scholar 

  41. Quadros, P.S., Pfau, J.L., Goldstein, A.Y., De Vries, G.J. & Wagner, C.K. Sex differences in progesterone receptor expression: a potential mechanism for estradiol-mediated sexual differentiation. Endocrinology 143, 3727–3739 (2002).

    Article  CAS  Google Scholar 

  42. Han, T.M. & De Vries, G.J. Organizational effects of testosterone, estradiol, and dihydrotestosterone on vasopressin mRNA expression in the bed nucleus of the stria terminalis. J. Neurobiol. 54, 502–510 (2003).

    Article  CAS  Google Scholar 

  43. Plumari, L. et al. Changes in the arginine-vasopressin immunoreactive systems in male mice lacking a functional aromatase gene. J. Neuroendocrinol. 14, 971–978 (2002).

    Article  CAS  Google Scholar 

  44. De Mees, C. et al. Alpha-fetoprotein controls female fertility and prenatal development of the GnRH pathway through an anti-estrogenic action. Cell. Mol. Biol. (in the press).

Download references

Acknowledgements

This work was supported by grants from the National Institute for Child Health and Human Development (HD044897) and from the Fonds National de la Recherche Scientifique (1.5.082.04) to J. Bakker; a grant from the National Institute of Mental Health (MH50388) to J. Balthazart; and grants from the Fund for Collective Fundamental Research (2.4529.02 and 2.4565.04) and the Government of the “Communauté Française de Belgique” (“Action de Recherche Concertée” 00/05-250) to C. Szpirer. C. De Mees was supported by a fellowship from the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture. J. Bakker is a Research Associate and C. Szpirer is a Research Director at the Fonds National de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Bakker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakker, J., De Mees, C., Douhard, Q. et al. Alpha-fetoprotein protects the developing female mouse brain from masculinization and defeminization by estrogens. Nat Neurosci 9, 220–226 (2006). https://doi.org/10.1038/nn1624

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1624

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing