Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lbx1 and Tlx3 are opposing switches in determining GABAergic versus glutamatergic transmitter phenotypes

An Erratum to this article was published on 01 December 2005

This article has been updated

Abstract

Most neurons in vertebrates make a developmental choice between two principal neurotransmitter phenotypes (glutamatergic versus GABAergic). Here we show that the homeobox gene Lbx1 determines a GABAergic cell fate in the dorsal spinal cord at early embryonic stages. In Lbx1−/− mice, the presumptive GABAergic neurons are transformed into glutamatergic cells. Furthermore, overexpression of Lbx1 in the chick spinal cord is sufficient to induce GABAergic differentiation. Paradoxically, Lbx1 is also expressed in glutamatergic neurons. We previously reported that the homeobox genes Tlx1 and Tlx3 determine glutamatergic cell fate. Here we show that impaired glutamatergic differentiation, observed in Tlx3−/− mice, is restored in Tlx3−/−Lbx1−/− mice. These genetic studies suggest that Lbx1 expression defines a basal GABAergic differentiation state, and Tlx3 acts to antagonize Lbx1 to promote glutamatergic differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lbx1 expression and its requirement for GABAergic differentiation.
Figure 2: Expansion of glutamatergic neurons in Lbx1−/− dorsal spinal cord.
Figure 3: Lbx1 suppresses glutamatergic differentiation through a Tlx3-independent pathway.
Figure 4: Tlx3 antagonizes Lbx1 to promote glutamatergic differentiation.
Figure 5: Tlx3 antagonizes Lbx1 to suppress GABAergic differentiation.
Figure 6: Cell fate switch by Lbx1 ectopic expression.

Similar content being viewed by others

Change history

  • 21 November 2005

    This article contained a misspelling. Lhx1/2 should have read Lhx1/5 throughout the text. The PDF version of this article was corrected on 21 November 2005. Please see the PDF for details.

Notes

  1. *This article contained a misspelling. Lhx1/2 should have read Lhx1/5 throughout the text. The PDF version of this article was corrected on 21 November 2005. Please see the PDF for details.

References

  1. Gardner, E.J., Martin, J.H. & Jessell, T. The bodily senses. in Principles of Neural Science (eds. Kandel, E.R., Schwartz, J.H. & Jessell, T.M.) 430–450 (McGraw-Hill, 2000).

    Google Scholar 

  2. Craig, A.D. Pain mechanisms: labeled lines versus convergence in central processing. Annu. Rev. Neurosci. 26, 1–30 (2003).

    Article  CAS  Google Scholar 

  3. Polgar, E., Fowler, J.H., McGill, M.M. & Todd, A.J. The types of neuron which contain protein kinase C gamma in rat spinal cord. Brain Res. 833, 71–80 (1999).

    Article  CAS  Google Scholar 

  4. Azkue, J.J. et al. Glutamate-like immunoreactivity in ascending spinofugal afferents to the rat periaqueductal grey. Brain Res. 790, 74–81 (1998).

    Article  CAS  Google Scholar 

  5. Lu, Y. & Perl, E.R. A specific inhibitory pathway between substantia gelatinosa neurons receiving direct C-fiber input. J. Neurosci. 23, 8752–8758 (2003).

    Article  CAS  Google Scholar 

  6. Lu, Y. & Perl, E.R. Modular organization of excitatory circuits between neurons of the spinal superficial dorsal horn (laminae I and II). J. Neurosci. 25, 3900–3907 (2005).

    Article  CAS  Google Scholar 

  7. Melzack, R. & Wall, P.D. Pain mechanisms: a new theory. Science 150, 971–979 (1965).

    Article  CAS  Google Scholar 

  8. Malcangio, M. & Bowery, N.G. GABA and its receptors in the spinal cord. Trends Pharmacol. Sci. 17, 457–462 (1996).

    Article  CAS  Google Scholar 

  9. Kerchner, G.A., Wang, G.D., Qiu, C.S., Huettner, J.E. & Zhuo, M. Direct presynaptic regulation of GABA/glycine release by kainate receptors in the dorsal horn: an ionotropic mechanism. Neuron 32, 477–488 (2001).

    Article  CAS  Google Scholar 

  10. Dickenson, A.H. Gate control theory of pain stands the test of time. Br. J. Anaesth. 88, 755–757 (2002).

    Article  CAS  Google Scholar 

  11. Scholz, J. & Woolf, C.J. Can we conquer pain? Nat. Neurosci. 5 (suppl.), 1062–1067 (2002).

    Article  CAS  Google Scholar 

  12. Fitzgerald, M. The development of nociceptive circuits. Nat. Rev. Neurosci. 6, 507–520 (2005).

    Article  CAS  Google Scholar 

  13. Cheng, L. et al. Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates. Nat. Neurosci. 7, 510–517 (2004).

    Article  CAS  Google Scholar 

  14. Schuurmans, C. et al. Sequential phases of cortical specification involve Neurogenin-dependent and -independent pathways. EMBO J. 23, 2892–2902 (2004).

    Article  CAS  Google Scholar 

  15. Panganiban, G. & Rubenstein, J.L. Developmental functions of the Distal-less/Dlx homeobox genes. Development 129, 4371–4386 (2002).

    CAS  Google Scholar 

  16. Hoshino, M. et al. Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47, 201–213 (2005).

    Article  CAS  Google Scholar 

  17. Gross, M.K., Dottori, M. & Goulding, M. Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron 34, 535–549 (2002).

    Article  CAS  Google Scholar 

  18. Muller, T. et al. The homeodomain factor Lbx1 distinguishes two major programs of neuronal differentiation in the dorsal spinal cord. Neuron 34, 551–562 (2002).

    Article  CAS  Google Scholar 

  19. Kruger, M., Schafer, K. & Braun, T. The homeobox containing gene Lbx1 is required for correct dorsal-ventral patterning of the neural tube. J. Neurochem. 82, 774–782 (2002).

    Article  CAS  Google Scholar 

  20. Muller, T. et al. The bHLH factor Olig3 coordinates the specification of dorsal neurons in the spinal cord. Genes Dev. 19, 733–743 (2005).

    Article  Google Scholar 

  21. Erlander, M.G., Tillakaratne, N.J., Feldblum, S., Patel, N. & Tobin, A.J. Two genes encode distinct glutamate decarboxylases. Neuron 7, 91–100 (1991).

    Article  CAS  Google Scholar 

  22. McIntire, S.L., Reimer, R.J., Schuske, K., Edwards, R.H. & Jorgensen, E.M. Identification and characterization of the vesicular GABA transporter. Nature 389, 870–876 (1997).

    Article  CAS  Google Scholar 

  23. Fremeau, R.T. Jr. et al. The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31, 247–260 (2001).

    Article  CAS  Google Scholar 

  24. Qian, Y., Shirasawa, S., Chen, C.L., Cheng, L. & Ma, Q. Proper development of relay somatic sensory neurons and D2/D4 interneurons requires homeobox genes Rnx/Tlx-3 and Tlx-1. Genes Dev. 16, 1220–1233 (2002).

    Article  CAS  Google Scholar 

  25. Stein, R., Mori, N., Matthews, K., Lo, L.-C. & Anderson, D.J. The NGF-inducible SCG10 mRNA encodes a novel membrane-bound protein present in growth cones and abundant in developing neurons. Neuron 1, 463–476 (1988).

    Article  CAS  Google Scholar 

  26. Logan, C., Wingate, R.J., McKay, I.J. & Lumsden, A. Tlx-1 and Tlx-3 homeobox gene expression in cranial sensory ganglia and hindbrain of the chick embryo: markers of patterned connectivity. J. Neurosci. 18, 5389–5402 (1998).

    Article  CAS  Google Scholar 

  27. Caspary, T. & Anderson, K.V. Patterning cell types in the dorsal spinal cord: what the mouse mutants say. Nat. Rev. Neurosci. 4, 289–297 (2003).

    Article  Google Scholar 

  28. Goulding, M., Lanuza, G., Sapir, T. & Narayan, S. The formation of sensorimotor circuits. Curr. Opin. Neurobiol. 12, 508–515 (2002).

    Article  CAS  Google Scholar 

  29. Helms, A.W. & Johnson, J.E. Specification of dorsal spinal cord interneurons. Curr. Opin. Neurobiol. 13, 42–49 (2003).

    Article  CAS  Google Scholar 

  30. Borodinsky, L.N. et al. Activity-dependent homeostatic specification of transmitter expression in embryonic neurons. Nature 429, 523–530 (2004).

    Article  CAS  Google Scholar 

  31. Schaffner, A.E., Behar, T., Nadi, S., Smallwood, V. & Barker, J.L. Quantitative analysis of transient GABA expression in embryonic and early postnatal rat spinal cord neurons. Brain Res. Dev. Brain Res. 72, 265–276 (1993).

    Article  CAS  Google Scholar 

  32. Somogyi, R., Wen, X., Ma, W. & Barker, J.L. Developmental kinetics of GAD family mRNAs parallel neurogenesis in the rat spinal cord. J. Neurosci. 15, 2575–2591 (1995).

    Article  CAS  Google Scholar 

  33. Gross, M.K. et al. Lbx1 is required for muscle precursor migration along a lateral pathway into the limb. Development 127, 413–424 (2000).

    CAS  Google Scholar 

  34. Shirasawa, S. et al. Rnx deficiency results in congenital central hypoventilation. Nat. Genet. 24, 287–290 (2000).

    Article  CAS  Google Scholar 

  35. Birren, S.J., Lo, L.C. & Anderson, D.J. Sympathetic neurons undergo a developmental switch in trophic dependence. Development 119, 597–610 (1993).

    CAS  Google Scholar 

  36. Chen, Z.F. et al. The paired homeodomain protein DRG11 is required for the projection of cutaneous sensory afferent fibers to the dorsal spinal cord. Neuron 31, 59–73 (2001).

    Article  CAS  Google Scholar 

  37. Morgan, B.A. & Fekete, D.M. Manipulating gene expression with replication-competent retroviruses. in Methods in Avian Embryology Vol. 51 (ed. Bronner-Fraser, M.E.) 185–218 (Academic, San Diego, 1996).

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank J. Johnson, D. Rowitch, R. Puettmann-Holgado and F. Yang for critical comments on the manuscript. We dedicate this work to the memory of S. Korsmeyer, in whose laboratory the Tlx gene mutant mice were made. Q.M. is a Claudia Adams Barr Scholar and a Pew Scholar in Biomedical Sciences. This work is supported by grants from the US National Institutes of Health to Q.M. and M.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiufu Ma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Neurotransmitter phenotypes of the dorsal spinal cord neurons at embryonic stages. (PDF 1093 kb)

Supplementary Fig. 2

Tlx3 antagonizes Lbx1 to promote the glutamatergic cell fate. (PDF 185 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, L., Samad, O., Xu, Y. et al. Lbx1 and Tlx3 are opposing switches in determining GABAergic versus glutamatergic transmitter phenotypes. Nat Neurosci 8, 1510–1515 (2005). https://doi.org/10.1038/nn1569

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1569

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing