Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuronal fate determinants of adult olfactory bulb neurogenesis

Abstract

Adult neurogenesis in mammals is restricted to two small regions, including the olfactory bulb, where GABAergic and dopaminergic interneurons are newly generated throughout the entire lifespan. However, the mechanisms directing them towards a specific neuronal phenotype are not yet understood. Here, we demonstrate the dual role of the transcription factor Pax6 in generating neuronal progenitors and also in directing them towards a dopaminergic periglomerular phenotype in adult mice. We present further evidence that dopaminergic periglomerular neurons originate in a distinct niche, the rostral migratory stream, and are fewer derived from precursors in the zone lining the ventricle. This regionalization of the adult precursor cells is further supported by the restricted expression of the transcription factor Olig2, which specifies transit-amplifying precursor fate and opposes the neurogenic role of Pax6. Together, these data explain both extrinsic and intrinsic mechanisms controlling neuronal identity in adult neurogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of the transcription factors Pax6 and Olig2 in the SEZ-olfactory bulb pathway.
Figure 2: Functional analysis of the transcription factors Pax6 and Olig2 in adult neurogenesis.
Figure 3: Quantitative localization analysis of infected cells after virus injection into the SEZ or the RMS.
Figure 4: Functional analysis of Pax6 and Olig2 in the specification of neuronal subtypes in adult neurogenesis.

Similar content being viewed by others

References

  1. Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z. & Lindvall, O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963–970 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Nakatomi, H. et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110, 429–441 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Altman, J. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J. Comp. Neurol. 137, 433–457 (1969).

    Article  CAS  PubMed  Google Scholar 

  4. Luskin, M.B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Lois, C. & Alvarez-Buylla, A. Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Kosaka, K. et al. Chemically defined neuron groups and their subpopulations in the glomerular layer of the rat main olfactory bulb. Neurosci. Res. 23, 73–88 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Saghatelyan, A., de Chevigny, A., Schachner, M. & Lledo, P.M. Tenascin-R mediates activity-dependent recruitment of neuroblasts in the adult mouse forebrain. Nat. Neurosci. 7, 347–356 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Kosaka, T., Hataguchi, Y., Hama, K., Nagatsu, I. & Wu, J.Y. Coexistence of immunoreactivities for glutamate decarboxylase and tyrosine hydroxylase in some neurons in the periglomerular region of the rat main olfactory bulb: possible coexistence of gamma-aminobutyric acid (GABA) and dopamine. Brain Res. 343, 166–171 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Kosaka, K., Toida, K., Aika, Y. & Kosaka, T. How simple is the organization of the olfactory glomerulus?: the heterogeneity of so-called periglomerular cells. Neurosci. Res. 30, 101–110 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Jessell, T.M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Bertrand, N., Castro, D.S. & Guillemot, F. Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517–530 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Marin, O. & Rubenstein, J.L. A long, remarkable journey: tangential migration in the telencephalon. Nat. Rev. Neurosci. 2, 780–790 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Rallu, M., Corbin, J.G. & Fishell, G. Parsing the prosencephalon. Nat. Rev. Neurosci. 3, 943–951 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Marshall, C.A., Suzuki, S.O. & Goldman, J.E. Gliogenic and neurogenic progenitors of the subventricular zone: who are they, where did they come from, and where are they going? Glia 43, 52–61 (2003).

    Article  PubMed  Google Scholar 

  15. Doetsch, F., Caille, I., Lim, D.A., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Garcia, A.D., Doan, N.B., Imura, T., Bush, T.G. & Sofroniew, M.V. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat. Neurosci. 7, 1233–1241 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021–1034 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Capela, A. & Temple, S. LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35, 865–875 (2002).

    Article  PubMed  Google Scholar 

  19. Hack, M.A., Sugimori, M., Lundberg, C., Nakafuku, M. & Götz, M. Regionalization and fate specification in neurospheres: the role of Olig2 and Pax6. Mol. Cell. Neurosci. 25, 664–678 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Belluzzi, O., Benedusi, M., Ackman, J. & LoTurco, J.J. Electrophysiological differentiation of new neurons in the olfactory bulb. J. Neurosci. 23, 10411–10418 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Petreanu, L. & Alvarez-Buylla, A. Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J. Neurosci. 22, 6106–6113 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yamasaki, T. et al. Pax6 regulates granule cell polarization during parallel fiber formation in the developing cerebellum. Development 128, 3133–3144 (2001).

    CAS  PubMed  Google Scholar 

  23. Mizuguchi, R. et al. Combinatorial roles of olig2 and neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Neuron 31, 757–771 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Novitch, B.G., Chen, A.I. & Jessell, T.M. Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31, 773–789 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Ashery-Padan, R., Marquardt, T., Zhou, X. & Gruss, P. Pax6 activity in the lens primordium is required for lens formation and for correct placement of a single retina in the eye. Genes Dev. 14, 2701–2711 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haubst, N. et al. Molecular dissection of Pax6 function: the specific roles of the paired domain and homeodomain in brain development. Development 131, 6131–6140 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Heins, N. et al. Glial cells generate neurons: the role of the transcription factor Pax6. Nat. Neurosci. 5, 308–315 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Lee, S.K., Lee, B., Ruiz, E.C. & Pfaff, S.L. Olig2 and Ngn2 function in opposition to modulate gene expression in motor neuron progenitor cells. Genes Dev. 19, 282–294 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lu, Q.R. et al. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75–86 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Winner, B., Cooper-Kuhn, C.M., Aigner, R., Winkler, J. & Kuhn, H.G. Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur. J. Neurosci. 16, 1681–1689 (2002).

    Article  PubMed  Google Scholar 

  31. Brunjes, P.C. Unilateral naris closure and olfactory system development. Brain Res. Brain Res. Rev. 19, 146–160 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Gabay, L., Lowell, S., Rubin, L. & Anderson, D. Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron 40, 485–499 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Zhou, Q. & Anderson, D.J. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109, 61–73 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Gritti, A. et al. Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J. Neurosci. 22, 437–445 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wichterle, H., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Direct evidence for homotypic, glia-independent neuronal migration. Neuron 18, 779–791 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Beech, R.D. et al. Nestin promoter/enhancer directs transgene expression to precursors of adult generated periglomerular neurons. J. Comp. Neurol. 475, 128–141 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Bedard, A. & Parent, A. Evidence of newly generated neurons in the human olfactory bulb. Brain Res. Dev. Brain Res. 151, 159–168 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Sanai, N. et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427, 740–744 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Huisman, E., Uylings, H.B. & Hoogland, P.V. A 100% increase of dopaminergic cells in the olfactory bulb may explain hyposmia in Parkinson's disease. Mov. Disord. 19, 687–692 (2004).

    Article  PubMed  Google Scholar 

  40. Pfeifer, A., Brandon, E.P., Kootstra, N., Gage, F.H. & Verma, I.M. Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo. Proc. Natl. Acad. Sci. USA 98, 11450–11455 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pfeifer, A., Ikawa, M., Dayn, Y. & Verma, I.M. Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc. Natl. Acad. Sci. USA 99, 2140–2145 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are particularly grateful to M. Nakafuku for the pMXIG Olig2 and pMXIG Olig2 VP16 constructs; N. Osumi for the pMESPax6engrailed construct; M. Wegner for the antisera directed against Sox10 and P. Durbec for providing PSANCAM antibodies. We also thank A. Bust, M. Öcalan and S. Ankri for excellent technical help. This work was supported by the Deutsche Forschungsgemeinschaft (M.G.) and by the Pasteur Institute (P.M.L., GPH no. 7, 'Stem cells') and the Centre National de la Recherche Scientifique and A.S. was supported by a postdoctoral fellowship from the Pasteur Institute and the Association Française Contre les Myopathies. R.A.-P. is supported by the Israel Science Foundation (401/02) and the German-Israeli Foundation for Scientific Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pierre-Marie Lledo or Magdalena Götz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Comparison of Pax6 and Olig2 dominant-negative and loss-of-function viral manipulations. (PDF 537 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hack, M., Saghatelyan, A., de Chevigny, A. et al. Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci 8, 865–872 (2005). https://doi.org/10.1038/nn1479

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1479

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing