Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Olfactory receptor neuron axon targeting: intrinsic transcriptional control and hierarchical interactions

Abstract

From insects to mammals, olfactory receptor neurons (ORNs) expressing a common olfactory receptor target their axons to specific glomeruli with high precision. Here we show in Drosophila that the POU transcription factor Acj6 controls the axon targeting specificity of a subset of ORN classes, as defined by the olfactory receptors that they express. Of these classes, some require Acj6 cell-autonomously, whereas others require Acj6 cell-nonautonomously. Mosaic analyses show that cooperative targeting occurs between axon terminals of the same ORN classes and that there are hierarchical interactions among different ORN classes. We propose that the precision of ORN axon targeting derives from both intrinsic transcriptional control and extensive axon-axon interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Acj6 is expressed in developing ORNs.
Figure 2: Some OR-Gal4 drivers are not expressed in acj6 mutant ORNs.
Figure 3: Some ORN classes do not require Acj6 for axon targeting.
Figure 4: Some ORN classes require Acj6 cell-autonomously for axon targeting.
Figure 5: Some ORN classes require Acj6 cell-nonautonomously for axon targeting.
Figure 6: Quantitative analysis of mistargeting defects in eyFlp MARCM.

Similar content being viewed by others

References

  1. Clyne, P.J. et al. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22, 327–338 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A. & Axel, R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96, 725–736 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Vosshall, L.B., Wong, A.M. & Axel, R. An olfactory sensory map in the fly brain. Cell 102, 147–159 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Gao, Q., Yuan, B. & Chess, A. Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe. Nat. Neurosci. 3, 780–785 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Dobritsa, A.A., van der Goes van Naters, W., Warr, C.G., Steinbrecht, R.A. & Carlson, J.R. Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37, 827–841 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Jefferis, G.S.X.E., Marin, E.C., Stocker, R.F. & Luo, L. Target neuron prespecification in the olfactory map of Drosophila. Nature 414, 204–208 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Marin, E.C., Jefferis, G.S.X.E., Komiyama, T., Zhu, H. & Luo, L. Representation of the glomerular olfactory map in the Drosophila brain. Cell 109, 243–255 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Wong, A.M., Wang, J.W. & Axel, R. Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109, 229–241 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Vassar, R. et al. Topographic organization of sensory projections to the olfactory bulb. Cell 79, 981–991 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Ressler, K.J., Sullivan, S.L. & Buck, L.B. Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79, 1245–1255 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Mombaerts, P. et al. Visualizing an olfactory sensory map. Cell 87, 675–686 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Zou, Z., Horowitz, L.F., Montmayeur, J.P., Snapper, S. & Buck, L.B. Genetic tracing reveals a stereotyped sensory map in the olfactory cortex. Nature 414, 173–179 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, F., Nemes, A., Mendelsohn, M. & Axel, R. Odorant receptors govern the formation of a precise topographic map. Cell 93, 47–60 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, J.W., Wong, A.M., Flores, J., Vosshall, L.B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Ang, L.H., Kim, J., Stepensky, V. & Hing, H. Dock and Pak regulate olfactory axon pathfinding in Drosophila. Development 130, 1307–1316 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Hummel, T. et al. Axonal targeting of olfactory receptor neurons in Drosophila is controlled by Dscam. Neuron 37, 221–231 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Hummel, T. & Zipursky, S.L. Afferent induction of olfactory glomeruli requires N-cadherin. Neuron 42, 77–88 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Jhaveri, D., Saharan, S., Sen, A. & Rodrigues, V. Positioning sensory terminals in the olfactory lobe of Drosophila by Robo signaling. Development 131, 1903–1912 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Komiyama, T., Johnson, W.A., Luo, L. & Jefferis, G.S.X.E. From lineage to wiring specificity. POU domain transcription factors control precise connections of Drosophila olfactory projection neurons. Cell 112, 157–167 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Clyne, P.J. et al. The odor specificities of a subset of olfactory receptor neurons are governed by Acj6, a POU-domain transcription factor. Neuron 22, 339–347 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Ayer, R.K., Jr. & Carlson, J. acj6: a gene affecting olfactory physiology and behavior in Drosophila. Proc. Natl. Acad. Sci. USA 88, 5467–5471 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Estes, P.S., Ho, G.L., Narayanan, R. & Ramaswami, M. Synaptic localization and restricted diffusion of a Drosophila neuronal synaptobrevin–green fluorescent protein chimera in vivo. J. Neurogenet. 13, 233–255 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Newsome, T.P., Asling, B. & Dickson, B.J. Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127, 851–860 (2000).

    CAS  PubMed  Google Scholar 

  25. Arber, S., Ladle, D.R., Lin, J.H., Frank, E. & Jessell, T.M. ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons. Cell 101, 485–498 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Lin, J.H. et al. Functionally related motor neuron pool and muscle sensory afferent subtypes defined by coordinate ETS gene expression. Cell 95, 393–407 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Jefferis, G.S.X.E. et al. Developmental origin of wiring specificity in the olfactory system of Drosophila. Development 131, 117–130 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Zhu, H. & Luo, L. Diverse functions of N-cadherin in dendritic and axonal terminal arborization of olfactory projection neurons. Neuron 42, 63–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Ebrahimi, F.A. & Chess, A. Olfactory neurons are interdependent in maintaining axonal projections. Curr. Biol. 10, 219–222 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Vassalli, A., Rothman, A., Feinstein, P., Zapotocky, M. & Mombaerts, P. Minigenes impart odorant receptor-specific axon guidance in the olfactory bulb. Neuron 35, 681–696 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Feinstein, P. & Mombaerts, P. A contextual model for axonal sorting into glomeruli in the mouse olfactory system. Cell 117, 817–831 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Clandinin, T.R. & Zipursky, S.L. Afferent growth cone interactions control synaptic specificity in the Drosophila visual system. Neuron 28, 427–436 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, J., Zugates, C.T., Liang, I.H., Lee, C.H. & Lee, T. Drosophila Dscam is required for divergent segregation of sister branches and suppresses ectopic bifurcation of axons. Neuron 33, 559–571 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Ng, J. et al. Rac GTPases control axon growth, guidance and branching. Nature 416, 442–447 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Scott, K. et al. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 14, 661–673 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. Vosshall, K. Scott, C. Warr, A. Goldman, C. Miller, D. Lessing, A. Ray and R. Ignell for the OR-Gal4 drivers; E. Buchner for antibodies; and T. Clandinin, K. Shen and members of the Luo laboratory for comments on the manuscript. This work was supported by grants from the US National Institutes of Health (to L.L. and J.R.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqun Luo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Drifter is not expressed in most developing ORNs. (a, b, c) Drifter is not expressed in the developing 3rd antennal segment (outlined in a3-c3) at 18 (a), 24 (b) and 50 (c) hour APF. (d, e) At both 50 (d) and 72 (e) hour APF, Drifter is expressed in the developing maxillary palp (outlined in d3 and e3), but mostly in Elav-negative cells. (JPG 155 kb)

Supplementary Fig. 2

Normal targeting of ipsi- and contralateral targeting of Or47b and 88a axons in acj6 heterozygous control and hemizygous mutant. The right antenna was excised and brains were dissected 10 days later. (JPG 119 kb)

Supplementary Fig. 3

Mistargeting studied using a presynaptic marker n-syb-GFP. Targeting defects of acj6 hemizygous mutants revealed by n-syb-GFP are similar to those observed using a membrane marker mCD8-GFP (Figs. 4&5). (JPG 79 kb)

Supplementary Fig. 4

ORN axons of the same class do not show extensive fasciculation prior to glomerular targeting. Arrows indicate non-fasciculated axons. (JPG 176 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komiyama, T., Carlson, J. & Luo, L. Olfactory receptor neuron axon targeting: intrinsic transcriptional control and hierarchical interactions. Nat Neurosci 7, 819–825 (2004). https://doi.org/10.1038/nn1284

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1284

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing