Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Use-dependent AMPA receptor block in mice lacking GluR2 suggests postsynaptic site for LTP expression

Abstract

The mechanisms responsible for enhanced transmission during long-term potentiation (LTP) at CA1 hippocampal synapses remain elusive. Several popular models for LTP expression propose an increase in 'use' of existing synaptic elements, such as increased probability of transmitter release or increased opening of postsynaptic receptors. To test these models directly, we studied a GluR2 knockout mouse in which AMPA receptor transmission is rendered sensitive to a use-dependent block by polyamine compounds. This method can detect increases during manipulations affecting transmitter release or AMPA receptor channel open time and probability, but shows no such changes during LTP. Our results indicate that the recruitment of new AMPA receptors and/or an increase in the conductance of these receptors is responsible for the expression of CA1 LTP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selective block of AMPA-receptor-mediated synaptic transmission by HPP-SP in GluR2–/– mice.
Figure 2: Block by HPP-SP in GluR2–/– mice is use dependent and reversible.
Figure 3: Enhancement of presynaptic or postsynaptic use increases block by HPP-SP.
Figure 4: Whole-cell experiments show similar increases in amplitude and quantal content following pairing-induced LTP in GluR2–/– mice.
Figure 5: Field experiments show predominant change in AMPA receptor transmission during LTP in GluR2–/– mice.
Figure 6: Long-term potentiation produces no change in block by HPP-SP.
Figure 7: Analytical model showing expected change in HPP-SP block for a shift in Pr distribution.
Figure 8: Summary of effects of experimental manipulations on HPP-SP block.

Similar content being viewed by others

References

  1. Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361 , 31–39 (1993).

    Article  CAS  Google Scholar 

  2. Malinow, R. & Tsien, R. W. Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices. Nature 346, 177–180 ( 1990).

    Article  CAS  Google Scholar 

  3. Kullmann, D. M. & Nicoll, R. A. Long-term potentiation is associated with increases in quantal content and quantal amplitude. Nature 357, 240–244 ( 1992).

    Article  CAS  Google Scholar 

  4. Larkman, A., Hannay, T., Stratford, K. & Jack, J. Presynaptic release probability influences the locus of long-term potentiation. Nature 360, 70–73 ( 1992).

    Article  CAS  Google Scholar 

  5. Liao, D., Jones, A. & Malinow, R. Direct measurement of quantal changes underlying long-term potentiation in CA1 hippocampus. Neuron 9, 1089–1097 (1992).

    Article  CAS  Google Scholar 

  6. Stevens, C. F. & Wang, Y. Changes in reliability of synaptic function as a mechanism for plasticity. Nature 371, 704–707 (1994).

    Article  CAS  Google Scholar 

  7. Bolshakov, V. Y. & Siegelbaum, S. A. Regulation of hippocampal transmitter release during development and long-term potentiation. Science 269, 1730 –1734 (1995).

    Article  CAS  Google Scholar 

  8. Foster, T. C. & McNaughton, B. L. Long-term enhancement of CA1 synaptic transmission is due to increased quantal size, not quantal content. Hippocampus 1, 79–91 (1991).

    Article  CAS  Google Scholar 

  9. Manabe, T., Renner, P. & Nicoll, R. A. Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currents. Nature 355, 50–55 ( 1992).

    Article  CAS  Google Scholar 

  10. Liao, D., Hessler, N. A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 ( 1995).

    Article  CAS  Google Scholar 

  11. Isaac, J. T., Nicoll, R. A. & Malenka, R. C. Evidence for silent synapses: implications for the expression of LTP. Neuron 15, 427– 434 (1995).

    Article  CAS  Google Scholar 

  12. Isaac, J. T., Hjelmstad, G. O., Nicoll, R. A. & Malenka, R. C. Long-term potentiation at single fiber inputs to hippocampal CA1 pyramidal cells. Proc. Natl. Acad. Sci. USA 93, 8710 –8715 (1996).

    Article  CAS  Google Scholar 

  13. Stricker, C., Field, A. C. & Redman, S. J. Changes in quantal parameters of EPSCs in rat CA1 neurones in vitro after the induction of long-term potentiation. J. Physiol. (Lond.) 490, 443–454 (1996).

    Article  CAS  Google Scholar 

  14. Kullmann, D. M. Amplitude fluctuations of dual-component EPSCs in hippocampal pyramidal cells: implications for long-term potentiation. Neuron 12, 1111–1120 (1994).

    Article  CAS  Google Scholar 

  15. Durand, G. M., Kovalchuk, Y. & Konnerth, A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381, 71 –75 (1996).

    Article  CAS  Google Scholar 

  16. Kullmann, D. M., Erdemli, G. & Asztely, F. LTP of AMPA and NMDA receptor-mediated signals: evidence for presynaptic expression and extrasynaptic glutamate spill-over. Neuron 17, 461–474 ( 1996).

    Article  CAS  Google Scholar 

  17. Asztely, F., Erdemli, G. & Kullmann, D. M. Extrasynaptic glutamate spillover in the hippocampus: dependence on temperature and the role of active glutamate uptake. Neuron 18, 281–293 ( 1997).

    Article  CAS  Google Scholar 

  18. Lynch, G. & Baudry, M. The biochemistry of memory: a new and specific hypothesis. Science 224, 1057 –1063 (1984).

    Article  CAS  Google Scholar 

  19. Maren, S., Tocco, G., Standley, S., Baudry, M. & Thompson, R. F. Postsynaptic factors in the expression of long-term potentiation (LTP): increased glutamate receptor binding following LTP induction in vivo. Proc. Natl. Acad. Sci. USA 90, 9654–9658 (1993).

    Article  CAS  Google Scholar 

  20. Ambros-Ingerson, J. & Lynch, G. Channel gating kinetics and synaptic efficacy: a hypothesis for expression of long-term potentiation. Proc. Natl. Acad. Sci. USA 90, 7903– 7907 (1993).

    Article  CAS  Google Scholar 

  21. Roche, K. W., Tingley, W. G. & Huganir, R. L. Glutamate receptor phosphorylation and synaptic plasticity. Curr. Opin. Neurobiol. 4, 383– 388 (1994).

    Article  CAS  Google Scholar 

  22. Benke, T. A., Anderson, W. W. & Collingridge, G. L. AMPA receptor channel conductance is increased in LTP CA1 region of rat hippocampus. Nature 393, 793–797 (1998).

    Article  CAS  Google Scholar 

  23. Hessler, N. A., Shirke, A. M. & Malinow, R. The probability of transmitter release at a mammalian central synapse. Nature 366, 569– 572 (1993).

    Article  CAS  Google Scholar 

  24. Rosenmund, C., Clements, J. D. & Westbrook, G. L. Nonuniform probability of glutamate release at a hippocampal synapse. Science 262, 754– 757 (1993).

    Article  CAS  Google Scholar 

  25. Manabe, T. & Nicoll, R. A. Long-term potentiation: evidence against an increase in transmitter release probability in the CA1 region of the hippocampus. Science 265, 1888– 1892 (1994).

    Article  CAS  Google Scholar 

  26. Washburn, M. S. & Dingledine R. Block of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by polyamines and polyamine toxins . J. Pharmacol. Exp. Ther. 278, 669–678 (1996).

    CAS  PubMed  Google Scholar 

  27. Bahring R. & Mayer, M. L. An analysis of philanthrotoxin block for recombinant rat GluR6(Q) glutamate receptor channels. J. Physiol. (Lond.) (in press).

  28. Washburn, M. S., Numberger, M. Zhang, S. & Dingledine, R. Differential dependence on GluR2 expression of three characteristic features of AMPA receptors. J. Neurosci. 17, 9393– 9406 (1998).

    Article  Google Scholar 

  29. Jia, Z. et al. Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron 17, 945–956 ( 1996).

    Article  CAS  Google Scholar 

  30. Malgaroli, A. et al. Presynaptic component of long-term potentiation visualized at individual hippocampal synapses. Science 268, 1624–1628 (1995).

    Article  CAS  Google Scholar 

  31. Huang, E. P. & Stevens, C. F. Estimating the distribution of synaptic reliabilities. J. Neurophysiol. 78, 2870–2880 (1997).

    Article  CAS  Google Scholar 

  32. Dobrunz, L. E. & Stevens, C. F. Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18, 995–1008 ( 1997).

    Article  CAS  Google Scholar 

  33. Isaacson, J. S. & Nicoll, R. A. Aniracetam reduces glutamate receptor desensitization and slows the decay of fast excitatory synaptic currents in the hippocampus. Proc. Natl. Acad. Sci. USA 88, 10936–10940 ( 1991).

    Article  CAS  Google Scholar 

  34. Tang, C. M., Shi, Q. Y., Katchman, A. & Lynch, G. Modulation of the time course of fast EPSCs and glutamate channel kinetics by aniracetam. Science 254, 288–290 ( 1991).

    Article  CAS  Google Scholar 

  35. Partin, K. M., Fleck, M. W. & Mayer, M. L. AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate. J. Neurosci. 16, 6634– 6647 (1996).

    Article  CAS  Google Scholar 

  36. Traynelis, S. F. & Wahl, P. Control of rat GluR6 glutamate receptor open probability by protein kinase A and calcineurin. J. Physiol. (Lond.) 503, 513–531 (1997).

    Article  CAS  Google Scholar 

  37. Greengard, P., Jen, J., Nairn, A. C. & Stevens, C. F. Enhancement of the glutamate response by cAMP-dependent protein kinase in hippocampal neurons. Science 253, 1135– 1138 (1991).

    Article  CAS  Google Scholar 

  38. Wu, G., Malinow, R. & Cline, H. T. Maturation of a central glutamatergic synapse. Science 274, 972–976 ( 1996).

    Article  CAS  Google Scholar 

  39. Spacek, J. & Harris, K. M. Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J. Neurosci. 17, 190–203 (1997).

    Article  CAS  Google Scholar 

  40. Lledo, P. M., Zhang, X., Sudhof, T. C., Malenka, R. C. & Nicoll, R. A. Postsynaptic membrane fusion and long-term potentiation. Science 279, 399–403 (1998).

    Article  CAS  Google Scholar 

  41. Constantine-Paton, M. & Cline, H. T. LTP and activity-dependent synaptogenesis: the more alike they are, the more different they become. Curr. Opin. Neurobiol. 8, 139–148 (1998).

    Article  CAS  Google Scholar 

  42. Lisman, J., Malenka, R. C., Nicoll, R. A. & Malinow, R. Learning mechanisms: the case for CaM-KII. Science 276, 2001–2002 (1997).

    Article  CAS  Google Scholar 

  43. Maletic-Savatic, M., Koothan, T. & Malinow, R. Calcium-evoked dendritic exocytosis in cultured hippocampal neurons. Part II: mediation by calcium/calmodulin-dependent protein kinase II. J. Neurosci. 18, 6814– 6821 (1998).

    Article  CAS  Google Scholar 

  44. Shirke, A. M. & Malinow, R. Mechanisms of potentiation by calcium-calmodulin kinase II of postsynaptic sensitivity in rat hippocampal CA1 neurons. J. Neurophysiol. 78, 2682–2692 (1997).

    Article  CAS  Google Scholar 

  45. Nishimune, A. et al. NSF binding to GluR2 regulates synaptic transmission. Neuron 21, 87–97 ( 1998).

    Article  CAS  Google Scholar 

  46. Nayak, A., Zastrow, D. J., Licksteig, R., Zahniser, N. R. & Browning, M. D. Maintenance of late-phase LTP is accompanied by PKA-dependent increase in AMPA receptor synthesis. Nature 394, 680–683 ( 1998).

    Article  CAS  Google Scholar 

  47. Wan, Q. et al. Recruitment of functional GABA(A) receptors to postsynaptic domains by insulin. Nature 388, 686– 690 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Cline, K. Svoboda and members of the Malinow lab for comments on the manuscript and Y. Hayashi and N. Dawkins for assistance in genotyping. Supported by N.I.H. and Mathers Foundation (R.M.) and a Burroughs Wellcome Fund Career Award (Z. F. M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary F. Mainen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mainen, Z., Jia, Z., Roder, J. et al. Use-dependent AMPA receptor block in mice lacking GluR2 suggests postsynaptic site for LTP expression. Nat Neurosci 1, 579–586 (1998). https://doi.org/10.1038/2812

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2812

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing