Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia

Abstract

Intermittent hypoxia causes a form of serotonin-dependent synaptic plasticity in the spinal cord known as phrenic long-term facilitation (pLTF). Here we show that increased synthesis of brain-derived neurotrophic factor (BDNF) in the spinal cord is necessary and sufficient for pLTF in adult rats. We found that intermittent hypoxia elicited serotonin-dependent increases in BDNF synthesis in ventral spinal segments containing the phrenic nucleus, and the magnitude of these BDNF increases correlated with pLTF magnitude. We used RNA interference (RNAi) to interfere with BDNF expression, and tyrosine kinase receptor inhibition to block BDNF signaling. These disruptions blocked pLTF, whereas intrathecal injection of BDNF elicited an effect similar to pLTF. Our findings demonstrate new roles and regulatory mechanisms for BDNF in the spinal cord and suggest new therapeutic strategies for treating breathing disorders such as respiratory insufficiency after spinal injury. These experiments also illustrate the potential use of RNAi to investigate functional consequences of gene expression in the mammalian nervous system in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intermittent hypoxia elicits pLTF and increased BDNF synthesis in ventral spinal segments associated with the phrenic motor nucleus.
Figure 2: Regulation of ventral cervical BDNF following intermittent hypoxia.
Figure 3: Intrathecal BDNF facilitates phrenic motor output.
Figure 4: BDNF siRNA reduced BDNF mRNA in vitro as well as hypoxia-induced BDNF synthesis in vivo.
Figure 5: BDNF siRNA and Trk receptor inhibition with K252a block pLTF.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Mitchell, G.S. & Johnson, S.M. Neuroplasticity in respiratory motor control. J. Appl. Physiol. 94, 358–374 (2003).

    Article  CAS  Google Scholar 

  2. Feldman, J.L., Mitchell, G.S. & Nattie, E.E. Breathing: rhythmicity, plasticity and chemosensitivity. Annu. Rev. Neurosci. 26, 239–266 (2003).

    Article  CAS  Google Scholar 

  3. Baker, T.L., Fuller, D.D., Zabka, A.G. & Mitchell, G.S. Respiratory plasticity: differential actions of continuous and episodic hypoxia and hypercapnia. Respir. Physiol. 129, 25–35 (2001).

    Article  CAS  Google Scholar 

  4. Mitchell, G.S. et al. Intermittent hypoxia and respiratory plasticity. J. Appl. Physiol. 90, 2466–2475 (2001).

    Article  CAS  Google Scholar 

  5. Prabhakar, N.R. Oxygen sensing during intermittent hypoxia: cellular and molecular mechanisms. J. Appl. Physiol. 90, 1986–1994 (2001).

    Article  CAS  Google Scholar 

  6. Fuller, D.D., Zabka, A.G., Baker, T.L. & Mitchell, G.S. Phrenic long-term facilitation requires 5-HT receptor activation during but not following episodic hypoxia. J. Appl. Physiol. 90, 2001–2006 (2001).

    Article  CAS  Google Scholar 

  7. Baker-Herman, T.L. & Mitchell, G.S. Phrenic long-term facilitation requires spinal serotonin receptor activation and protein synthesis. J. Neurosci. 22, 6239–6246 (2002).

    Article  CAS  Google Scholar 

  8. Thoenen, H. Neurotrophins and neuronal plasticity. Science 270, 593–598 (1995).

    Article  CAS  Google Scholar 

  9. Thoenen, H. Neurotrophins and activity-dependent plasticity. Prog. Brain Res. 128, 183–191 (2000).

    Article  CAS  Google Scholar 

  10. Black, I.B. Trophic regulation of synaptic plasticity. J. Neurobiol. 41, 108–118 (1999).

    Article  CAS  Google Scholar 

  11. Schinder, A.F. & Poo, M-m. The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci. 23, 639–645 (2000).

    Article  CAS  Google Scholar 

  12. Poo, M-m. Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2, 1–9 (2001).

    Article  Google Scholar 

  13. Bach, K.B. & Mitchell, G.S. Hypercapnia-induced long-term depression of respiratory activity requires α2-adrenergic receptors. J. Appl. Physiol. 84, 2099–2105 (1998).

    Article  CAS  Google Scholar 

  14. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  Google Scholar 

  15. Hammond, S.M., Bernstein, E., Beach, D. & Hannon, G.J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296 (2000).

    Article  CAS  Google Scholar 

  16. Bavis, R.W. & Mitchell, G.S. Intermittent hypoxia induces phrenic long-term facilitation in carotid-denervated rats. J. Appl. Physiol. 94, 399–409 (2003).

    Article  Google Scholar 

  17. Solomon, I.C. Excitation of phrenic and sympathetic output during acute hypoxia: contribution of medullary oxygen detectors. Respir. Physiol. 121, 101–117 (2000).

    Article  CAS  Google Scholar 

  18. Bodineau, L. & Larnicol, N. Brainstem and hypothalamic areas activated by tissue hypoxia: Fos-like immunoreactivity induced by carbon monoxide inhalation in the rat. Neuroscience 108, 643–653 (2001).

    Article  CAS  Google Scholar 

  19. Kokaia, Z. et al. Regional brain-derived neurotrophic factor mRNA and protein levels following transient forebrain ischemia in the rat. Brain Res. Mol. Brain Res. 38, 139–144 (1996).

    Article  CAS  Google Scholar 

  20. Blitz, D.M. & Rameriz, J.M. Long-term modulation of respiratory network activity following anoxia in vitro. J. Neurophysiol. 87, 2964–2971 (2002).

    Article  Google Scholar 

  21. Patterson, S.L., Grover, L.M., Schwartzkroin, P.A. & Bothwell, M. Neurotrophin expression in rat hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron 9, 1081–1088 (1992).

    Article  CAS  Google Scholar 

  22. Richerson, G.B., Wang, W., Tiwari, J. & Bradley, S.R. Chemosensitivity of serotonergic neurons in the rostral ventral medulla. Respir. Physiol. 129, 175–190 (2001).

    Article  CAS  Google Scholar 

  23. Veasey, S.C., Fornal, C.A., Metzler, C.W. & Jacobs, B.L. Response of serotonergic caudal raphe neurons in relation to specific motor activities in freely moving cats. J. Neurosci. 15, 5346–5359 (1995).

    Article  CAS  Google Scholar 

  24. Uchino, H., Lindvall, O., Siesjo, B.K. & Kokaia, Z. Hyperglycemia and hypercapnia suppress BDNF gene expression in vulnerable regions after transient forebrain ischemia in the rat. J. Cereb. Blood Flow Metab. 17, 1303–1308 (1997).

    Article  CAS  Google Scholar 

  25. Caplen, N.J., Parrish, S., Imani, F., Fire, A. & Morgan, R.A. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. USA 98, 9742–9747 (2001).

    Article  CAS  Google Scholar 

  26. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  27. Anonymous editorial. Whither RNAi? Nat. Cell Biol. 5, 489–490 (2003).

  28. Basura, G.J., Zhou, S.Y., Walker, P.D. & Goshgarian, H.G. Distribution of serotonin 2A and 2C receptor mRNA expression in the cervical ventral horn and phrenic motoneurons following spinal cord hemisection. Exp. Neurol. 169, 255–263 (2001).

    Article  CAS  Google Scholar 

  29. Balkowiec A. & Katz, D.M. Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ. J. Neurosci. 20, 7417–7423 (2000).

    Article  CAS  Google Scholar 

  30. Tongiorgi, E., Righi, M. & Cattaneo, A. Activity-dependent dendritic targeting of BDNF and TrkB mRNAs in hippocampal neurons. J. Neurosci. 17, 9492–9505 (1997).

    Article  CAS  Google Scholar 

  31. Li, Y.X., Zhang, Y., Lester, H.A., Schuman, E.M. & Davidson, N. Enhancement of neurotransmitter release induced by brain-derived neurotrophic factor in cultured hippocampal neurons. J. Neurosci. 18, 10231–10240 (1998).

    Article  CAS  Google Scholar 

  32. Schinder, A.F., Berninger, B. & Poo, M. Postsynaptic target specificity of neurotrophin-induced presynaptic potentiation. Neuron 25, 151–163 (2000).

    Article  CAS  Google Scholar 

  33. Levine, E.S., Crozier, R.A., Black, I.B. & Plummer, M.R. Brain-derived neurotrophic factor modulates hippocampal synaptic transmission by increasing N-methyl-D-aspartic acid receptor activity. Proc. Natl. Acad. Sci. USA 95, 10235–10239 (1998).

    Article  CAS  Google Scholar 

  34. Grosshans, D.R., Clayton, D.A., Coultrap, S.J. & Browning, M.D. LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nat. Neurosci. 5, 27–33 (2002).

    Article  CAS  Google Scholar 

  35. Malinow, R. & Malenka, R.C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    Article  CAS  Google Scholar 

  36. Tanaka, T., Saito, H. & Matsuki, N. Inhibition of GABAA synaptic responses by brain-derived neurotrophic factor (BDNF) in rat hippocampus. J. Neurosci. 17, 2959–2966 (1997).

    Article  CAS  Google Scholar 

  37. Kafitz, K.W., Rose, C.R., Thoenen, H. & Konnerth, A. Neurotrophin-evoked rapid excitation through TrkB receptors. Nature 401, 918–921 (1999).

    Article  CAS  Google Scholar 

  38. Ling, L. et al. Chronic intermittent hypoxia elicits serotonin-dependent plasticity in the central neural control of breathing. J. Neurosci. 21, 5381–5388 (2001).

    Article  CAS  Google Scholar 

  39. Kinkead, R. et al. Cervical dorsal rhizotomy enhances serotonergic innervation of phrenic motoneurons and serotonin-dependent long-term facilitation of phrenic motor output in rats. J. Neurosci. 18, 8436–8443 (1998).

    Article  CAS  Google Scholar 

  40. Johnson, R.A., Okragly, A.J., Haak-Frendscho, M. & Mitchell, G.S. Cervical dorsal rhizotomy increases brain-derived neurotrophic factor and neurotrophin-3 expression in the ventral spinal cord. J. Neurosci. 20, RC771–5 (2000).

    Article  Google Scholar 

  41. Kinney, H.C., Filiano, J.J. & White, W.F. Medullary serotonergic network deficiency in the sudden infant death syndrome: review of a 15-year study of a single dataset. J. Neuropathol. Exp. Neurol. 60, 228–247 (2001).

    Article  CAS  Google Scholar 

  42. Strollo, P.J. & Rogers, R.M. Obstructive sleep apnea. N. Engl. J. Med. 334, 99–104 (1996).

    Article  Google Scholar 

  43. Bixler, E.O. et al. Prevalence of sleep-disordered breathing in women: effects of gender. Am. J. Respir. Crit. Care Med. 163, 608–613 (2001).

    Article  CAS  Google Scholar 

  44. Young, T., Peppard, P.E. & Gottlieb, D.J. Epidemiology of obstructive sleep apnea: a population health perspective. Am. J. Respir. Crit. Care Med. 165, 1217–1239 (2002).

    Article  Google Scholar 

  45. Veasey, S.C., Panckeri, K.A., Hoffman, E.A., Pack, A.I. & Hendricks, J.C. The effects of serotonin antagonists in an animal model of sleep-disordered breathing. Am. J. Respir. Crit. Care Med. 153, 776–786 (1996).

    Article  CAS  Google Scholar 

  46. Zabka, A.G., Behan, M. & Mitchell, G.S. Long term facilitation of respiratory motor output decreases with age in male rats. J. Physiol. 531, 509–514 (2001).

    Article  CAS  Google Scholar 

  47. Jackson, A.B. & Groomes, T.E. Incidence of respiratory complication following spinal cord injury. Arch. Phys. Med. Rehabil. 75, 270–275 (1994).

    Article  CAS  Google Scholar 

  48. Mansel, J.K. & Norman, J.R. Respiratory complications and management of spinal cord injuries. Chest 97, 1446–1452 (1990).

    Article  CAS  Google Scholar 

  49. Fuller, D.D., Johnson, S.M., Olson, E.B. Jr. & Mitchell, G.S. Synaptic pathways to phrenic motoneurons are enhanced by chronic intermittent hypoxia following cervical spinal cord injury. J. Neurosci. 23, 2993–3000 (2003).

    Article  CAS  Google Scholar 

  50. Thoenen, H. & Sendtner, M. Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nat. Neurosci. 5, 1046–1050 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

These experiments were supported by National Institutes of Health (NIH) grant HL 65383. T.L.B.-H. and R.W.B. were supported by NIH Training Grant HL 07654. D.D.F. was supported by the Parker B. Francis Foundation. F.J.G. was supported by a Christopher Reeve Paralysis Foundation Fellowship (GA1-0305-2). We thank B. Hodgeman for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon S Mitchell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker-Herman, T., Fuller, D., Bavis, R. et al. BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat Neurosci 7, 48–55 (2004). https://doi.org/10.1038/nn1166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing