Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Retrograde regulation of synaptic vesicle endocytosis and recycling

Abstract

Sustained release of neurotransmitter depends upon the recycling of synaptic vesicles. Until now, it has been assumed that vesicle recycling is regulated by signals from the presynaptic bouton alone, but results from rat hippocampal neurons reported here indicate that this need not be the case. Fluorescence imaging and pharmacological analysis show that a nitric oxide (NO) signal generated postsynaptically can regulate endocytosis and at least one later step in synaptic vesicle recycling. The proposed retrograde pathway involves an NMDA receptor (NMDAR)-dependent postsynaptic production of NO, diffusion of NO to a presynaptic site, and a cGMP-dependent increase in presynaptic phosphatidylinositol 4,5-biphosphate (PIP2). These results indicate that the regulation of synaptic vesicle recycling may integrate a much broader range of neural activity signals than previously recognized, including postsynaptic depolarization and the activation of NMDARs at both immediate and nearby postsynaptic active zones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Retrograde regulation of endocytosis.
Figure 2: Cyclic GMP production within presynaptic boutons upon electrical stimulation.
Figure 3: Reduction of PIP2 availability results in slower endocytosis.
Figure 4: Effect of scavenging PIP2 by PH–GFP on FM 4-64 unloading.
Figure 5: The effects of reducing PIP2 availability and blocking NO signaling are not additive.
Figure 6: ImmunoEM of hippocampal neuronal cultures showing the ultrastructural distribution of PH–GFP as detected with a monoclonal antibody against GFP.

Similar content being viewed by others

References

  1. Tao, H.W. & Poo, M. Retrograde signaling at central synapses. Proc. Natl. Acad. Sci. USA 98, 11009–11015 (2001).

    Article  CAS  Google Scholar 

  2. Wilson, R.I. & Nicoll, R.A. Endocannabinoid signaling in the brain. Science 296, 678–682 (2002).

    Article  CAS  Google Scholar 

  3. Prast, H. & Philippu, A. Nitric oxide as modulator of neuronal function. Prog. Neurobiol. 64, 51–68 (2001).

    Article  CAS  Google Scholar 

  4. Arancio, O., Kandel, E.R. & Hawkins, R.D. Activity-dependent long-term enhancement of transmitter release by presynaptic 3′,5′-cGMP in cultured hippocampal neurons. Nature 376, 74–80 (1995).

    Article  CAS  Google Scholar 

  5. Meffert, M.K., Calakos, N.C., Scheller, R.H. & Schulman, H. Nitric oxide modulates synaptic vesicle docking/fusion reactions. Neuron 16, 1229–1236 (1996).

    Article  CAS  Google Scholar 

  6. Sporns, O. & Jenkinson, S. Potassium ion- and nitric oxide-induced exocytosis from populations of hippocampal synapses during synaptic maturation in vitro. Neuroscience 80, 1057–1073 (1997).

    Article  CAS  Google Scholar 

  7. Klyachko, V.A., Ahern, G.P. & Jackson, M.B. cGMP-mediated facilitation in nerve terminals by enhancement of the spike after hyperpolarization. Neuron 31, 1015–1025 (2001).

    Article  CAS  Google Scholar 

  8. Micheva, K.D., Holz, R.W. & Smith, S.J. Regulation of presynaptic phosphatidy-linositol 4,5-biphosphate by neuronal activity. J. Cell Biol. 154, 355–368 (2001).

    Article  CAS  Google Scholar 

  9. Cremona, O. & De Camilli, P. Phosphoinositides in membrane traffic at the synapse. J. Cell Sci. 114, 1041–1052 (2001).

    CAS  PubMed  Google Scholar 

  10. Martin, T.F.J. PI(4,5)P(2) regulation of surface membrane traffic. Curr. Opin. Cell Biol. 13, 493–499 (2001).

    Article  CAS  Google Scholar 

  11. Osborne, S.L., Meunier, F.A. & Schiavo, G. Phosphoinositides as key regulators of synaptic function. Neuron 32, 9–12 (2001).

    Article  CAS  Google Scholar 

  12. Rao, A., Kim, E., Sheng, M. & Craig, A.-M. Heterogeneity in the molecular composition of excitatory postsynaptic sites during development of hippocampal neurons in culture. J. Neurosci. 18, 1217–1229 (1998).

    Article  CAS  Google Scholar 

  13. Wendland, B. et al. Existence of nitric oxide synthase in rat hippocampal pyramidal cells. Proc. Natl. Acad. Sci. USA 91, 2151–2155 (1994).

    Article  CAS  Google Scholar 

  14. Burette, A., Zabel, U., Weinberg, R.J., Schmidt, H.H.H.W. & Valtschanoff, J.G. Synaptic localization of nitric oxide synthase and soluble guanylyl cyclase in the hippocampus. J. Neurosci. 22, 8961–8970 (2002).

    Article  CAS  Google Scholar 

  15. Son, H. et al. Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell 87, 1015–1023 (1996).

    Article  CAS  Google Scholar 

  16. De Camilli, P., Slepnev, V.I., Shupliakov, O. & Brodin, L. Synaptic vesicle endocytosis. in Synapses (eds. Cowan, M.W., Sudhof, T.C. & Stevens, C.F.) 217–274 (The Johns Hopkins Univ. Press, Baltimore, MD, 2001).

    Google Scholar 

  17. Li, Z. & Murthy, V.N. Visualizing postendocytic traffic of synaptic vesicles at hippocampal synapses. Neuron 31, 593–605 (2001).

    Article  CAS  Google Scholar 

  18. Betz, W.J., Mao, F. & Bewick, G.S. Activity-dependent fluorescent staining and destaining of living motor nerve terminals. J. Neurosci. 12, 363–375 (1992).

    Article  CAS  Google Scholar 

  19. Ryan, T.A. Presynaptic imaging techniques. Curr. Opin. Neurobiol. 11, 544–549 (2001).

    Article  CAS  Google Scholar 

  20. Khvotchev, M. & Südhof, T. Newly synthesized phosphatidylinositol phosphates are required for synaptic norepinephrine but not glutamate or γ-aminobutyric acid (GABA) release. J. Biol. Chem. 273, 21451–21454 (1998).

    Article  CAS  Google Scholar 

  21. Varnai, P. & Balla, T. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J. Cell Biol. 143, 501–510 (1998).

    Article  CAS  Google Scholar 

  22. Paterson, H.F. et al. Phospholipase C delta 1 requires a pleckstrin homology domain for interaction with the plasma membrane. Biochem. J. 312, 661–666 (1995).

    Article  CAS  Google Scholar 

  23. Ryan, T.A. & Smith, S.J. Vesicle pool mobilization during action potential firing at hippocampal synapses. Neuron 14, 983–989 (1995).

    Article  CAS  Google Scholar 

  24. Hokin, L. & Hokin, M.R. Biochim. Biophys. Acta 84, 563–575 (1964).

    CAS  PubMed  Google Scholar 

  25. Eichberg, J. & Dawson, R.M. Polyphosphoinositides in myelin. Biochem. J. 96, 644–650 (1965).

    Article  CAS  Google Scholar 

  26. Klingauf, J., Kavalali, E.T. & Tsien, R.W. Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature 394, 581–585 (1998).

    Article  CAS  Google Scholar 

  27. Sankaranarayanan, S. & Ryan, T.A. Calcium accelerates endocytosis of vSNAREs at hippocampal synapses. Nat. Neurosci. 4, 129–136 (2001).

    Article  CAS  Google Scholar 

  28. Berridge, M.J., Lipp, P. & Bootman, M.D. The versatility and universatility of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21 (2000).

    Article  CAS  Google Scholar 

  29. Wu, L., Bauer, C.S., Zhen, X., Xie, C. & Yang, J. Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2. Nature 419, 947–952 (2002).

    Article  CAS  Google Scholar 

  30. Gaidarov, I. & Keen, J.H. Phosphoinositide-AP-2 interactions required for targeting to plasma membrane clathrin-coated pits. J. Cell Biol. 146, 755–764 (1999).

    Article  CAS  Google Scholar 

  31. Ford, M.G.J. et al. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291, 1051–1055 (2001).

    Article  CAS  Google Scholar 

  32. Itoh, T. et al. Role of the ENTH domain in phosphatidylinositol-4,5,-biphosphate binding and endocytosis. Science 291, 1047–1051 (2001).

    Article  CAS  Google Scholar 

  33. Lin, H.C. & Gilman, A.G. Regulation of dynamin I GTPase activity by G protein beta gamma subunits and phosphatidylinositol 4,5-biphosphate. J. Biol. Chem. 271, 27979–27982 (1996).

    Article  CAS  Google Scholar 

  34. Zheng, J. et al. Identification of the binding site for acidic phospholipids on the PH domain of dynamin: Implications for stimulation of GTPase activity. J. Mol. Biol. 255, 14–21 (1996).

    Article  CAS  Google Scholar 

  35. Cremona, O. et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99, 179–188 (1999).

    Article  CAS  Google Scholar 

  36. Rozelle, A.L. et al. Phosphatidylinositol 4,5-biphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr. Biol. 10, 311–320 (2000).

    Article  CAS  Google Scholar 

  37. Wenk, M.R. et al. PIP kinase Iγ is the major PI(4,5)P2 synthesizing enzyme at the synapse. Neuron 32, 79–88 (2001).

    Article  CAS  Google Scholar 

  38. Guo, J. et al. Phosphatidylinositol 4-kinase type IIα is responsible for the phosphatidylinositol 4-kinase activity associated with synaptic vesicles. Proc. Natl. Acad. Sci. USA 100, 3995–4000 (2003).

    Article  CAS  Google Scholar 

  39. McPherson, P.S. et al. A presynaptic inositol-5-phosphatase. Nature 379, 353–357 (1996).

    Article  CAS  Google Scholar 

  40. Clementi, E et al. Nitric oxide action on growth factor-elicited signals. Phosphoinositide hydrolysis and [Ca2+]i responses are negatively modulated via a cGMP-dependent protein kinase I pathway. J. Biol. Chem. 270, 22277–22282 (1995).

    Article  CAS  Google Scholar 

  41. Goslin, K., Asmussen, H. & Banker, G. Rat hippocampal neurons in low-density culture. in Culturing Nerve Cells (eds. Banker, G. & Goslin, K.) 339–370 (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  42. Xia, Z., Dudek, H., Miranti, C.K. & Greenberg, M.E. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ ERK-dependent mechanism. J. Neurosci. 16, 5425–5436 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R.W. Aldrich and the members of the Smith lab for critical reading of the manuscript and Y. Gedde for technical assistance. This work was supported by grants from the US National Institutes of Health and a gift from the Vincent Coates Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina D Micheva.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Micheva, K., Buchanan, J., Holz, R. et al. Retrograde regulation of synaptic vesicle endocytosis and recycling. Nat Neurosci 6, 925–932 (2003). https://doi.org/10.1038/nn1114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing